Step |
Hyp |
Ref |
Expression |
1 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
2 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
3 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
4 |
|
xrlenlt |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
5 |
2 3 4
|
syl2anr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
6 |
5
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
7 |
6
|
rexbidva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) ) |
8 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) |
9 |
7 8
|
bitr2di |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ¬ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
10 |
9
|
ralbidva |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
11 |
1 10
|
bitr3id |
⊢ ( 𝐴 ⊆ ℝ* → ( ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
12 |
|
supxrunb1 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
13 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
14 |
|
nltpnft |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
16 |
11 12 15
|
3bitrd |
⊢ ( 𝐴 ⊆ ℝ* → ( ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
17 |
16
|
con4bid |
⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |