Metamath Proof Explorer


Theorem supxrcld

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis supxrcld.1 ( 𝜑𝐴 ⊆ ℝ* )
Assertion supxrcld ( 𝜑 → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 supxrcld.1 ( 𝜑𝐴 ⊆ ℝ* )
2 supxrcl ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )
3 1 2 syl ( 𝜑 → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )