Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | supxrcli.1 | ⊢ 𝐴 ⊆ ℝ* | |
Assertion | supxrcli | ⊢ sup ( 𝐴 , ℝ* , < ) ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrcli.1 | ⊢ 𝐴 ⊆ ℝ* | |
2 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
3 | 1 2 | ax-mp | ⊢ sup ( 𝐴 , ℝ* , < ) ∈ ℝ* |