Metamath Proof Explorer


Theorem supxrcli

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis supxrcli.1 𝐴 ⊆ ℝ*
Assertion supxrcli sup ( 𝐴 , ℝ* , < ) ∈ ℝ*

Proof

Step Hyp Ref Expression
1 supxrcli.1 𝐴 ⊆ ℝ*
2 supxrcl ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )
3 1 2 ax-mp sup ( 𝐴 , ℝ* , < ) ∈ ℝ*