| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrbnd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 2 |
1
|
3expia |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) < +∞ → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ) |
| 3 |
2
|
con3d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ¬ sup ( 𝐴 , ℝ* , < ) ∈ ℝ → ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 4 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 5 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) |
| 6 |
4 5
|
mpan2 |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
| 7 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐴 ⊆ ℝ → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 10 |
|
nltpnft |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 12 |
3 11
|
sylibrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ¬ sup ( 𝐴 , ℝ* , < ) ∈ ℝ → sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 13 |
12
|
orrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ∨ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 14 |
|
mnfltxr |
⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ∨ sup ( 𝐴 , ℝ* , < ) = +∞ ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |