Step |
Hyp |
Ref |
Expression |
1 |
|
supxrbnd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
2 |
1
|
3expia |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) < +∞ → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ) |
3 |
2
|
con3d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ¬ sup ( 𝐴 , ℝ* , < ) ∈ ℝ → ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
4 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
5 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
7 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ⊆ ℝ → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
10 |
|
nltpnft |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
12 |
3 11
|
sylibrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ¬ sup ( 𝐴 , ℝ* , < ) ∈ ℝ → sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
13 |
12
|
orrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ∨ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
14 |
|
mnfltxr |
⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ∨ sup ( 𝐴 , ℝ* , < ) = +∞ ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |