| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrlub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ∃ 𝑥 ∈ 𝐴 𝐵 < 𝑥 ) ) |
| 2 |
1
|
notbid |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝐵 < 𝑥 ) ) |
| 3 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝐵 < 𝑥 ) |
| 4 |
2 3
|
bitr4di |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ) ) |
| 5 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 6 |
|
xrlenlt |
⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup ( 𝐴 , ℝ* , < ) ) ) |
| 7 |
5 6
|
sylan |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup ( 𝐴 , ℝ* , < ) ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ⊆ ℝ* ) |
| 9 |
8
|
sselda |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 11 |
9 10
|
xrlenltd |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
| 12 |
11
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ) ) |
| 13 |
4 7 12
|
3bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ) ) |