Step |
Hyp |
Ref |
Expression |
1 |
|
supxrleubrnmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
supxrleubrnmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
3 |
|
supxrleubrnmpt.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
5 |
1 4 2
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ* ) |
6 |
|
supxrleub |
⊢ ( ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ) |
7 |
5 3 6
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ) |
8 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
9 |
8
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ≤ 𝐶 |
11 |
9 10
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 |
12 |
1 11
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
14 |
4
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
15 |
13 2 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
16 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) |
18 |
|
breq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶 ) ) |
19 |
18
|
rspcva |
⊢ ( ( 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) → 𝐵 ≤ 𝐶 ) |
20 |
16 17 19
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
21 |
20
|
ex |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝐵 ≤ 𝐶 ) ) |
22 |
12 21
|
ralrimi |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
23 |
22
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |
24 |
|
vex |
⊢ 𝑧 ∈ V |
25 |
4
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
26 |
24 25
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
27 |
26
|
biimpi |
⊢ ( 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
28 |
27
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
29 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 |
30 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
31 |
18
|
biimprcd |
⊢ ( 𝐵 ≤ 𝐶 → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) |
32 |
30 31
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) |
33 |
32
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) ) |
34 |
29 10 33
|
rexlimd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) |
35 |
34
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝐶 ) ) |
36 |
28 35
|
mpd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → 𝑧 ≤ 𝐶 ) |
37 |
36
|
ralrimiva |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) |
38 |
37
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ) ) |
39 |
23 38
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |
40 |
7 39
|
bitrd |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |