Metamath Proof Explorer


Theorem supxrleubrnmpt

Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supxrleubrnmpt.x 𝑥 𝜑
supxrleubrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
supxrleubrnmpt.c ( 𝜑𝐶 ∈ ℝ* )
Assertion supxrleubrnmpt ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 supxrleubrnmpt.x 𝑥 𝜑
2 supxrleubrnmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
3 supxrleubrnmpt.c ( 𝜑𝐶 ∈ ℝ* )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 1 4 2 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ* )
6 supxrleub ( ( ran ( 𝑥𝐴𝐵 ) ⊆ ℝ*𝐶 ∈ ℝ* ) → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) )
7 5 3 6 syl2anc ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) )
8 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
9 8 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
10 nfv 𝑥 𝑧𝐶
11 9 10 nfralw 𝑥𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶
12 1 11 nfan 𝑥 ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 )
13 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
14 4 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ℝ* ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
15 13 2 14 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
16 15 adantlr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
17 simplr ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) ∧ 𝑥𝐴 ) → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 )
18 breq1 ( 𝑧 = 𝐵 → ( 𝑧𝐶𝐵𝐶 ) )
19 18 rspcva ( ( 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) → 𝐵𝐶 )
20 16 17 19 syl2anc ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) ∧ 𝑥𝐴 ) → 𝐵𝐶 )
21 20 ex ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) → ( 𝑥𝐴𝐵𝐶 ) )
22 12 21 ralrimi ( ( 𝜑 ∧ ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) → ∀ 𝑥𝐴 𝐵𝐶 )
23 22 ex ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 → ∀ 𝑥𝐴 𝐵𝐶 ) )
24 vex 𝑧 ∈ V
25 4 elrnmpt ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 ) )
26 24 25 ax-mp ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑧 = 𝐵 )
27 26 biimpi ( 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) → ∃ 𝑥𝐴 𝑧 = 𝐵 )
28 27 adantl ( ( ∀ 𝑥𝐴 𝐵𝐶𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → ∃ 𝑥𝐴 𝑧 = 𝐵 )
29 nfra1 𝑥𝑥𝐴 𝐵𝐶
30 rspa ( ( ∀ 𝑥𝐴 𝐵𝐶𝑥𝐴 ) → 𝐵𝐶 )
31 18 biimprcd ( 𝐵𝐶 → ( 𝑧 = 𝐵𝑧𝐶 ) )
32 30 31 syl ( ( ∀ 𝑥𝐴 𝐵𝐶𝑥𝐴 ) → ( 𝑧 = 𝐵𝑧𝐶 ) )
33 32 ex ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝑥𝐴 → ( 𝑧 = 𝐵𝑧𝐶 ) ) )
34 29 10 33 rexlimd ( ∀ 𝑥𝐴 𝐵𝐶 → ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑧𝐶 ) )
35 34 adantr ( ( ∀ 𝑥𝐴 𝐵𝐶𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → ( ∃ 𝑥𝐴 𝑧 = 𝐵𝑧𝐶 ) )
36 28 35 mpd ( ( ∀ 𝑥𝐴 𝐵𝐶𝑧 ∈ ran ( 𝑥𝐴𝐵 ) ) → 𝑧𝐶 )
37 36 ralrimiva ( ∀ 𝑥𝐴 𝐵𝐶 → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 )
38 37 a1i ( 𝜑 → ( ∀ 𝑥𝐴 𝐵𝐶 → ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ) )
39 23 38 impbid ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )
40 7 39 bitrd ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )