Metamath Proof Explorer


Theorem supxrleubrnmptf

Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses supxrleubrnmptf.x 𝑥 𝜑
supxrleubrnmptf.a 𝑥 𝐴
supxrleubrnmptf.n 𝑥 𝐶
supxrleubrnmptf.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
supxrleubrnmptf.c ( 𝜑𝐶 ∈ ℝ* )
Assertion supxrleubrnmptf ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 supxrleubrnmptf.x 𝑥 𝜑
2 supxrleubrnmptf.a 𝑥 𝐴
3 supxrleubrnmptf.n 𝑥 𝐶
4 supxrleubrnmptf.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
5 supxrleubrnmptf.c ( 𝜑𝐶 ∈ ℝ* )
6 nfcv 𝑦 𝐴
7 nfcv 𝑦 𝐵
8 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
9 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
10 2 6 7 8 9 cbvmptf ( 𝑥𝐴𝐵 ) = ( 𝑦𝐴 𝑦 / 𝑥 𝐵 )
11 10 rneqi ran ( 𝑥𝐴𝐵 ) = ran ( 𝑦𝐴 𝑦 / 𝑥 𝐵 )
12 11 supeq1i sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑦𝐴 𝑦 / 𝑥 𝐵 ) , ℝ* , < )
13 12 breq1i ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ sup ( ran ( 𝑦𝐴 𝑦 / 𝑥 𝐵 ) , ℝ* , < ) ≤ 𝐶 )
14 13 a1i ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ sup ( ran ( 𝑦𝐴 𝑦 / 𝑥 𝐵 ) , ℝ* , < ) ≤ 𝐶 ) )
15 nfv 𝑦 𝜑
16 2 nfcri 𝑥 𝑦𝐴
17 1 16 nfan 𝑥 ( 𝜑𝑦𝐴 )
18 8 nfel1 𝑥 𝑦 / 𝑥 𝐵 ∈ ℝ*
19 17 18 nfim 𝑥 ( ( 𝜑𝑦𝐴 ) → 𝑦 / 𝑥 𝐵 ∈ ℝ* )
20 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
21 20 anbi2d ( 𝑥 = 𝑦 → ( ( 𝜑𝑥𝐴 ) ↔ ( 𝜑𝑦𝐴 ) ) )
22 9 eleq1d ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℝ* 𝑦 / 𝑥 𝐵 ∈ ℝ* ) )
23 21 22 imbi12d ( 𝑥 = 𝑦 → ( ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* ) ↔ ( ( 𝜑𝑦𝐴 ) → 𝑦 / 𝑥 𝐵 ∈ ℝ* ) ) )
24 19 23 4 chvarfv ( ( 𝜑𝑦𝐴 ) → 𝑦 / 𝑥 𝐵 ∈ ℝ* )
25 15 24 5 supxrleubrnmpt ( 𝜑 → ( sup ( ran ( 𝑦𝐴 𝑦 / 𝑥 𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑦𝐴 𝑦 / 𝑥 𝐵𝐶 ) )
26 nfcv 𝑥
27 8 26 3 nfbr 𝑥 𝑦 / 𝑥 𝐵𝐶
28 nfv 𝑦 𝐵𝐶
29 eqcom ( 𝑥 = 𝑦𝑦 = 𝑥 )
30 29 imbi1i ( ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 ) ↔ ( 𝑦 = 𝑥𝐵 = 𝑦 / 𝑥 𝐵 ) )
31 eqcom ( 𝐵 = 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐵 = 𝐵 )
32 31 imbi2i ( ( 𝑦 = 𝑥𝐵 = 𝑦 / 𝑥 𝐵 ) ↔ ( 𝑦 = 𝑥 𝑦 / 𝑥 𝐵 = 𝐵 ) )
33 30 32 bitri ( ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 ) ↔ ( 𝑦 = 𝑥 𝑦 / 𝑥 𝐵 = 𝐵 ) )
34 9 33 mpbi ( 𝑦 = 𝑥 𝑦 / 𝑥 𝐵 = 𝐵 )
35 34 breq1d ( 𝑦 = 𝑥 → ( 𝑦 / 𝑥 𝐵𝐶𝐵𝐶 ) )
36 6 2 27 28 35 cbvralfw ( ∀ 𝑦𝐴 𝑦 / 𝑥 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )
37 36 a1i ( 𝜑 → ( ∀ 𝑦𝐴 𝑦 / 𝑥 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )
38 14 25 37 3bitrd ( 𝜑 → ( sup ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ 𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 ) )