Metamath Proof Explorer


Theorem supxrltinfxr

Description: The supremum of the empty set is strictly smaller than the infimum of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion supxrltinfxr sup ( ∅ , ℝ* , < ) < inf ( ∅ , ℝ* , < )

Proof

Step Hyp Ref Expression
1 mnfltpnf -∞ < +∞
2 xrsup0 sup ( ∅ , ℝ* , < ) = -∞
3 xrinf0 inf ( ∅ , ℝ* , < ) = +∞
4 1 2 3 3brtr4i sup ( ∅ , ℝ* , < ) < inf ( ∅ , ℝ* , < )