Description: The supremum of the empty set is strictly smaller than the infimum of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrltinfxr | ⊢ sup ( ∅ , ℝ* , < ) < inf ( ∅ , ℝ* , < ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfltpnf | ⊢ -∞ < +∞ | |
2 | xrsup0 | ⊢ sup ( ∅ , ℝ* , < ) = -∞ | |
3 | xrinf0 | ⊢ inf ( ∅ , ℝ* , < ) = +∞ | |
4 | 1 2 3 | 3brtr4i | ⊢ sup ( ∅ , ℝ* , < ) < inf ( ∅ , ℝ* , < ) |