Metamath Proof Explorer


Theorem supxrmnf

Description: Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrmnf ( 𝐴 ⊆ ℝ* → sup ( ( 𝐴 ∪ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 uncom ( 𝐴 ∪ { -∞ } ) = ( { -∞ } ∪ 𝐴 )
2 1 supeq1i sup ( ( 𝐴 ∪ { -∞ } ) , ℝ* , < ) = sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < )
3 mnfxr -∞ ∈ ℝ*
4 snssi ( -∞ ∈ ℝ* → { -∞ } ⊆ ℝ* )
5 3 4 mp1i ( 𝐴 ⊆ ℝ* → { -∞ } ⊆ ℝ* )
6 id ( 𝐴 ⊆ ℝ*𝐴 ⊆ ℝ* )
7 xrltso < Or ℝ*
8 supsn ( ( < Or ℝ* ∧ -∞ ∈ ℝ* ) → sup ( { -∞ } , ℝ* , < ) = -∞ )
9 7 3 8 mp2an sup ( { -∞ } , ℝ* , < ) = -∞
10 supxrcl ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* )
11 mnfle ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → -∞ ≤ sup ( 𝐴 , ℝ* , < ) )
12 10 11 syl ( 𝐴 ⊆ ℝ* → -∞ ≤ sup ( 𝐴 , ℝ* , < ) )
13 9 12 eqbrtrid ( 𝐴 ⊆ ℝ* → sup ( { -∞ } , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) )
14 supxrun ( ( { -∞ } ⊆ ℝ*𝐴 ⊆ ℝ* ∧ sup ( { -∞ } , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) → sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) )
15 5 6 13 14 syl3anc ( 𝐴 ⊆ ℝ* → sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) )
16 2 15 eqtrid ( 𝐴 ⊆ ℝ* → sup ( ( 𝐴 ∪ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) )