Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
⊢ ( 𝐴 ∪ { -∞ } ) = ( { -∞ } ∪ 𝐴 ) |
2 |
1
|
supeq1i |
⊢ sup ( ( 𝐴 ∪ { -∞ } ) , ℝ* , < ) = sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < ) |
3 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
4 |
|
snssi |
⊢ ( -∞ ∈ ℝ* → { -∞ } ⊆ ℝ* ) |
5 |
3 4
|
mp1i |
⊢ ( 𝐴 ⊆ ℝ* → { -∞ } ⊆ ℝ* ) |
6 |
|
id |
⊢ ( 𝐴 ⊆ ℝ* → 𝐴 ⊆ ℝ* ) |
7 |
|
xrltso |
⊢ < Or ℝ* |
8 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ -∞ ∈ ℝ* ) → sup ( { -∞ } , ℝ* , < ) = -∞ ) |
9 |
7 3 8
|
mp2an |
⊢ sup ( { -∞ } , ℝ* , < ) = -∞ |
10 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
11 |
|
mnfle |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → -∞ ≤ sup ( 𝐴 , ℝ* , < ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐴 ⊆ ℝ* → -∞ ≤ sup ( 𝐴 , ℝ* , < ) ) |
13 |
9 12
|
eqbrtrid |
⊢ ( 𝐴 ⊆ ℝ* → sup ( { -∞ } , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) |
14 |
|
supxrun |
⊢ ( ( { -∞ } ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ∧ sup ( { -∞ } , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) → sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |
15 |
5 6 13 14
|
syl3anc |
⊢ ( 𝐴 ⊆ ℝ* → sup ( ( { -∞ } ∪ 𝐴 ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |
16 |
2 15
|
eqtrid |
⊢ ( 𝐴 ⊆ ℝ* → sup ( ( 𝐴 ∪ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |