Metamath Proof Explorer


Theorem supxrpnf

Description: The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion supxrpnf ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴 ⊆ ℝ* → ( 𝑦𝐴𝑦 ∈ ℝ* ) )
2 pnfnlt ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 )
3 1 2 syl6 ( 𝐴 ⊆ ℝ* → ( 𝑦𝐴 → ¬ +∞ < 𝑦 ) )
4 3 ralrimiv ( 𝐴 ⊆ ℝ* → ∀ 𝑦𝐴 ¬ +∞ < 𝑦 )
5 breq2 ( 𝑧 = +∞ → ( 𝑦 < 𝑧𝑦 < +∞ ) )
6 5 rspcev ( ( +∞ ∈ 𝐴𝑦 < +∞ ) → ∃ 𝑧𝐴 𝑦 < 𝑧 )
7 6 ex ( +∞ ∈ 𝐴 → ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
8 7 ralrimivw ( +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
9 4 8 anim12i ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → ( ∀ 𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
10 pnfxr +∞ ∈ ℝ*
11 supxr ( ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ )
12 10 11 mpanl2 ( ( 𝐴 ⊆ ℝ* ∧ ( ∀ 𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ )
13 9 12 syldan ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ )