Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ* ) ) |
2 |
|
pnfnlt |
⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) |
3 |
1 2
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑦 ∈ 𝐴 → ¬ +∞ < 𝑦 ) ) |
4 |
3
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℝ* → ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ) |
5 |
|
breq2 |
⊢ ( 𝑧 = +∞ → ( 𝑦 < 𝑧 ↔ 𝑦 < +∞ ) ) |
6 |
5
|
rspcev |
⊢ ( ( +∞ ∈ 𝐴 ∧ 𝑦 < +∞ ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
7 |
6
|
ex |
⊢ ( +∞ ∈ 𝐴 → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
8 |
7
|
ralrimivw |
⊢ ( +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
9 |
4 8
|
anim12i |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
10 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
11 |
|
supxr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
12 |
10 11
|
mpanl2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
13 |
9 12
|
syldan |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |