| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) |
| 2 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 3 |
1 2
|
sstrdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → 𝐴 ⊆ ℝ* ) |
| 4 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 6 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 7 |
6
|
rexrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ* ) |
| 8 |
6
|
leidd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ , < ) ) |
| 9 |
|
suprleub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 10 |
6 9
|
mpdan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 11 |
|
supxrleub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 12 |
3 7 11
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 13 |
10 12
|
bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 14 |
8 13
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ) |
| 15 |
5
|
xrleidd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 16 |
|
supxrleub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 17 |
3 5 16
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 18 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → 𝐴 ≠ ∅ ) |
| 19 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 21 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 22 |
21
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → -∞ ∈ ℝ* ) |
| 23 |
1
|
sselda |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 24 |
23
|
rexrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ* ) |
| 25 |
5
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 26 |
23
|
mnfltd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → -∞ < 𝑧 ) |
| 27 |
|
supxrub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 28 |
3 27
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 29 |
22 24 25 26 28
|
xrltletrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
| 30 |
20 29
|
exlimddv |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
| 31 |
|
xrre |
⊢ ( ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) ∧ ( -∞ < sup ( 𝐴 , ℝ* , < ) ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ) ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 32 |
5 6 30 14 31
|
syl22anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 33 |
|
suprleub |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 34 |
32 33
|
mpdan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 35 |
17 34
|
bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 36 |
15 35
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 37 |
5 7 14 36
|
xrletrid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) |