Step |
Hyp |
Ref |
Expression |
1 |
|
supxrre1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
2 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
3 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
5 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
6 |
|
nltpnft |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
7 |
4 5 6
|
3syl |
⊢ ( 𝐴 ⊆ ℝ → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
8 |
7
|
necon2abid |
⊢ ( 𝐴 ⊆ ℝ → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
10 |
1 9
|
bitrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |