| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrre1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 2 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 3 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
| 5 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 6 |
|
nltpnft |
⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 7 |
4 5 6
|
3syl |
⊢ ( 𝐴 ⊆ ℝ → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 8 |
7
|
necon2abid |
⊢ ( 𝐴 ⊆ ℝ → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 10 |
1 9
|
bitrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |