| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrre1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 2 |
|
id |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ ) |
| 3 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 4 |
3
|
ssriv |
⊢ ℝ ⊆ ℝ* |
| 5 |
4
|
a1i |
⊢ ( 𝐴 ⊆ ℝ → ℝ ⊆ ℝ* ) |
| 6 |
2 5
|
sstrd |
⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
| 7 |
|
supxrbnd2 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 9 |
8
|
bicomd |
⊢ ( 𝐴 ⊆ ℝ → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 11 |
1 10
|
bitrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |