Metamath Proof Explorer


Theorem supxrre3

Description: The supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion supxrre3 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )

Proof

Step Hyp Ref Expression
1 supxrre1 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) )
2 id ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ )
3 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
4 3 ssriv ℝ ⊆ ℝ*
5 4 a1i ( 𝐴 ⊆ ℝ → ℝ ⊆ ℝ* )
6 2 5 sstrd ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* )
7 supxrbnd2 ( 𝐴 ⊆ ℝ* → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) )
8 6 7 syl ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ↔ sup ( 𝐴 , ℝ* , < ) < +∞ ) )
9 8 bicomd ( 𝐴 ⊆ ℝ → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )
10 9 adantr ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) < +∞ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )
11 1 10 bitrd ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) )