| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supxrre3rnmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
supxrre3rnmpt.a |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 3 |
|
supxrre3rnmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 5 |
1 4 3
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 6 |
1 3 4 2
|
rnmptn0 |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) |
| 7 |
|
supxrre3 |
⊢ ( ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≠ ∅ ) → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 9 |
1 3
|
rnmptbd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
| 10 |
8 9
|
bitr4d |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ) |