Metamath Proof Explorer


Theorem supxrss

Description: Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion supxrss ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → 𝐵 ⊆ ℝ* )
2 simpl ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → 𝐴𝐵 )
3 2 sselda ( ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → 𝑥𝐵 )
4 supxrub ( ( 𝐵 ⊆ ℝ*𝑥𝐵 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) )
5 1 3 4 syl2anc ( ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) ∧ 𝑥𝐴 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) )
6 5 ralrimiva ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → ∀ 𝑥𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) )
7 sstr ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → 𝐴 ⊆ ℝ* )
8 supxrcl ( 𝐵 ⊆ ℝ* → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* )
9 8 adantl ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* )
10 supxrleub ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) )
11 7 9 10 syl2anc ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) )
12 6 11 mpbird ( ( 𝐴𝐵𝐵 ⊆ ℝ* ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) )