Step |
Hyp |
Ref |
Expression |
1 |
|
unss |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ℝ* ) |
2 |
1
|
biimpi |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ* ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ* ) |
4 |
|
supxrcl |
⊢ ( 𝐵 ⊆ ℝ* → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
6 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
7 |
|
xrltso |
⊢ < Or ℝ* |
8 |
7
|
a1i |
⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
9 |
|
xrsupss |
⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑦 ∈ ℝ* ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑧 < 𝑤 ) ) ) |
10 |
8 9
|
supub |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑥 ∈ 𝐴 → ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ 𝐴 → ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
12 |
|
supxrcl |
⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
14 |
4
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
15 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
16 |
15
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
17 |
|
xrlelttr |
⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ∧ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
18 |
13 14 16 17
|
syl3anc |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → ( ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ∧ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
19 |
18
|
expdimp |
⊢ ( ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( sup ( 𝐵 , ℝ* , < ) < 𝑥 → sup ( 𝐴 , ℝ* , < ) < 𝑥 ) ) |
20 |
19
|
con3d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
21 |
20
|
exp41 |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝐵 ⊆ ℝ* → ( 𝑥 ∈ 𝐴 → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) ) ) ) |
22 |
21
|
com34 |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝐵 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) → ( 𝑥 ∈ 𝐴 → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) ) ) ) |
23 |
22
|
3imp |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ 𝐴 → ( ¬ sup ( 𝐴 , ℝ* , < ) < 𝑥 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) ) |
24 |
11 23
|
mpdd |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ 𝐴 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
25 |
7
|
a1i |
⊢ ( 𝐵 ⊆ ℝ* → < Or ℝ* ) |
26 |
|
xrsupss |
⊢ ( 𝐵 ⊆ ℝ* → ∃ 𝑦 ∈ ℝ* ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑦 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑦 → ∃ 𝑤 ∈ 𝐵 𝑧 < 𝑤 ) ) ) |
27 |
25 26
|
supub |
⊢ ( 𝐵 ⊆ ℝ* → ( 𝑥 ∈ 𝐵 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
28 |
27
|
3ad2ant2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ 𝐵 → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
29 |
24 28
|
jaod |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
30 |
6 29
|
syl5bi |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) ) |
31 |
30
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ) |
32 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
33 |
|
xrsupss |
⊢ ( 𝐵 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑥 < 𝑧 ∧ ∀ 𝑧 ∈ ℝ* ( 𝑧 < 𝑥 → ∃ 𝑦 ∈ 𝐵 𝑧 < 𝑦 ) ) ) |
34 |
25 33
|
suplub |
⊢ ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ* ∧ 𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ) |
35 |
32 34
|
sylani |
⊢ ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ) |
36 |
|
elun2 |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) |
37 |
36
|
anim1i |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 < 𝑦 ) → ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑥 < 𝑦 ) ) |
38 |
37
|
reximi2 |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) |
39 |
35 38
|
syl6 |
⊢ ( 𝐵 ⊆ ℝ* → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < sup ( 𝐵 , ℝ* , < ) ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) |
40 |
39
|
expd |
⊢ ( 𝐵 ⊆ ℝ* → ( 𝑥 ∈ ℝ → ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) ) |
41 |
40
|
ralrimiv |
⊢ ( 𝐵 ⊆ ℝ* → ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) |
43 |
|
supxr |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ¬ sup ( 𝐵 , ℝ* , < ) < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < sup ( 𝐵 , ℝ* , < ) → ∃ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) 𝑥 < 𝑦 ) ) ) → sup ( ( 𝐴 ∪ 𝐵 ) , ℝ* , < ) = sup ( 𝐵 , ℝ* , < ) ) |
44 |
3 5 31 42 43
|
syl22anc |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) → sup ( ( 𝐴 ∪ 𝐵 ) , ℝ* , < ) = sup ( 𝐵 , ℝ* , < ) ) |