Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℝ* ) ) |
2 |
|
pnfnlt |
⊢ ( 𝑧 ∈ ℝ* → ¬ +∞ < 𝑧 ) |
3 |
1 2
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝑧 ∈ 𝐴 → ¬ +∞ < 𝑧 ) ) |
4 |
3
|
ralrimiv |
⊢ ( 𝐴 ⊆ ℝ* → ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ) |
6 |
|
peano2re |
⊢ ( 𝑧 ∈ ℝ → ( 𝑧 + 1 ) ∈ ℝ ) |
7 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑧 + 1 ) ≤ 𝑦 ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) ) |
9 |
8
|
rspcva |
⊢ ( ( ( 𝑧 + 1 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) |
10 |
9
|
adantrr |
⊢ ( ( ( 𝑧 + 1 ) ∈ ℝ ∧ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) |
11 |
10
|
ancoms |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ∧ ( 𝑧 + 1 ) ∈ ℝ ) → ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) |
12 |
6 11
|
sylan2 |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 ) |
13 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
14 |
|
ltp1 |
⊢ ( 𝑧 ∈ ℝ → 𝑧 < ( 𝑧 + 1 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → 𝑧 < ( 𝑧 + 1 ) ) |
16 |
6
|
ancli |
⊢ ( 𝑧 ∈ ℝ → ( 𝑧 ∈ ℝ ∧ ( 𝑧 + 1 ) ∈ ℝ ) ) |
17 |
|
rexr |
⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℝ* ) |
18 |
|
rexr |
⊢ ( ( 𝑧 + 1 ) ∈ ℝ → ( 𝑧 + 1 ) ∈ ℝ* ) |
19 |
|
xrltletr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝑧 + 1 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
20 |
18 19
|
syl3an2 |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝑧 + 1 ) ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
21 |
17 20
|
syl3an1 |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 + 1 ) ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
22 |
21
|
3expa |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 + 1 ) ∈ ℝ ) ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
23 |
16 22
|
sylan |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 < ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ 𝑦 ) → 𝑧 < 𝑦 ) ) |
24 |
15 23
|
mpand |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑧 + 1 ) ≤ 𝑦 → 𝑧 < 𝑦 ) ) |
25 |
24
|
ancoms |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ ) → ( ( 𝑧 + 1 ) ≤ 𝑦 → 𝑧 < 𝑦 ) ) |
26 |
13 25
|
sylan |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑧 + 1 ) ≤ 𝑦 → 𝑧 < 𝑦 ) ) |
27 |
26
|
an32s |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑧 + 1 ) ≤ 𝑦 → 𝑧 < 𝑦 ) ) |
28 |
27
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑧 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
29 |
28
|
adantll |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ∧ 𝑧 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑧 + 1 ) ≤ 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
30 |
12 29
|
mpd |
⊢ ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ* ) ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) |
31 |
30
|
exp31 |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 ∈ ℝ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
32 |
31
|
a1dd |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 < +∞ → ( 𝑧 ∈ ℝ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
33 |
32
|
com4r |
⊢ ( 𝑧 ∈ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
34 |
33
|
com13 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝑧 ∈ ℝ → ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
35 |
34
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑧 ∈ ℝ → ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
36 |
35
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
37 |
5 36
|
jca |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
38 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
39 |
|
supxr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
40 |
38 39
|
mpanl2 |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( ∀ 𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
41 |
37 40
|
syldan |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
42 |
41
|
ex |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
43 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
44 |
43
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 ∈ ℝ* ) |
45 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
46 |
|
breq2 |
⊢ ( sup ( 𝐴 , ℝ* , < ) = +∞ → ( 𝑥 < sup ( 𝐴 , ℝ* , < ) ↔ 𝑥 < +∞ ) ) |
47 |
45 46
|
syl5ibr |
⊢ ( sup ( 𝐴 , ℝ* , < ) = +∞ → ( 𝑥 ∈ ℝ → 𝑥 < sup ( 𝐴 , ℝ* , < ) ) ) |
48 |
47
|
impcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 < sup ( 𝐴 , ℝ* , < ) ) |
49 |
48
|
adantll |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 < sup ( 𝐴 , ℝ* , < ) ) |
50 |
|
xrltso |
⊢ < Or ℝ* |
51 |
50
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → < Or ℝ* ) |
52 |
|
xrsupss |
⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑧 < 𝑤 ∧ ∀ 𝑤 ∈ ℝ* ( 𝑤 < 𝑧 → ∃ 𝑦 ∈ 𝐴 𝑤 < 𝑦 ) ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑧 < 𝑤 ∧ ∀ 𝑤 ∈ ℝ* ( 𝑤 < 𝑧 → ∃ 𝑦 ∈ 𝐴 𝑤 < 𝑦 ) ) ) |
54 |
51 53
|
suplub |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ( ( 𝑥 ∈ ℝ* ∧ 𝑥 < sup ( 𝐴 , ℝ* , < ) ) → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
55 |
44 49 54
|
mp2and |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) |
56 |
55
|
ex |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
57 |
43
|
ad2antlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
58 |
13
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
59 |
|
xrltle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 → 𝑥 ≤ 𝑦 ) ) |
60 |
57 58 59
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝑥 ≤ 𝑦 ) ) |
61 |
60
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 → ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
62 |
56 61
|
syld |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
63 |
62
|
ralrimdva |
⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
64 |
42 63
|
impbid |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |