Metamath Proof Explorer


Theorem supxrunb2

Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrunb2 ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴 ⊆ ℝ* → ( 𝑧𝐴𝑧 ∈ ℝ* ) )
2 pnfnlt ( 𝑧 ∈ ℝ* → ¬ +∞ < 𝑧 )
3 1 2 syl6 ( 𝐴 ⊆ ℝ* → ( 𝑧𝐴 → ¬ +∞ < 𝑧 ) )
4 3 ralrimiv ( 𝐴 ⊆ ℝ* → ∀ 𝑧𝐴 ¬ +∞ < 𝑧 )
5 4 adantr ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ) → ∀ 𝑧𝐴 ¬ +∞ < 𝑧 )
6 breq1 ( 𝑥 = 𝑧 → ( 𝑥 < 𝑦𝑧 < 𝑦 ) )
7 6 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦𝐴 𝑧 < 𝑦 ) )
8 7 rspcva ( ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ) → ∃ 𝑦𝐴 𝑧 < 𝑦 )
9 8 adantrr ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦𝐴 ⊆ ℝ* ) ) → ∃ 𝑦𝐴 𝑧 < 𝑦 )
10 9 ancoms ( ( ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦𝐴 ⊆ ℝ* ) ∧ 𝑧 ∈ ℝ ) → ∃ 𝑦𝐴 𝑧 < 𝑦 )
11 10 exp31 ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 ∈ ℝ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) ) )
12 11 a1dd ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 < +∞ → ( 𝑧 ∈ ℝ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) ) ) )
13 12 com4r ( 𝑧 ∈ ℝ → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 → ( 𝐴 ⊆ ℝ* → ( 𝑧 < +∞ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) ) ) )
14 13 com13 ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 → ( 𝑧 ∈ ℝ → ( 𝑧 < +∞ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) ) ) )
15 14 imp ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ) → ( 𝑧 ∈ ℝ → ( 𝑧 < +∞ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) ) )
16 15 ralrimiv ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ) → ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) )
17 5 16 jca ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ) → ( ∀ 𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) ) )
18 pnfxr +∞ ∈ ℝ*
19 supxr ( ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( ∀ 𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ )
20 18 19 mpanl2 ( ( 𝐴 ⊆ ℝ* ∧ ( ∀ 𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < +∞ → ∃ 𝑦𝐴 𝑧 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ )
21 17 20 syldan ( ( 𝐴 ⊆ ℝ* ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = +∞ )
22 21 ex ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 → sup ( 𝐴 , ℝ* , < ) = +∞ ) )
23 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
24 23 ad2antlr ( ( ( 𝐴 ⊆ ℝ*𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 ∈ ℝ* )
25 ltpnf ( 𝑥 ∈ ℝ → 𝑥 < +∞ )
26 breq2 ( sup ( 𝐴 , ℝ* , < ) = +∞ → ( 𝑥 < sup ( 𝐴 , ℝ* , < ) ↔ 𝑥 < +∞ ) )
27 25 26 syl5ibr ( sup ( 𝐴 , ℝ* , < ) = +∞ → ( 𝑥 ∈ ℝ → 𝑥 < sup ( 𝐴 , ℝ* , < ) ) )
28 27 impcom ( ( 𝑥 ∈ ℝ ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 < sup ( 𝐴 , ℝ* , < ) )
29 28 adantll ( ( ( 𝐴 ⊆ ℝ*𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → 𝑥 < sup ( 𝐴 , ℝ* , < ) )
30 xrltso < Or ℝ*
31 30 a1i ( ( ( 𝐴 ⊆ ℝ*𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → < Or ℝ* )
32 xrsupss ( 𝐴 ⊆ ℝ* → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀ 𝑤 ∈ ℝ* ( 𝑤 < 𝑧 → ∃ 𝑦𝐴 𝑤 < 𝑦 ) ) )
33 32 ad2antrr ( ( ( 𝐴 ⊆ ℝ*𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑧 ∈ ℝ* ( ∀ 𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀ 𝑤 ∈ ℝ* ( 𝑤 < 𝑧 → ∃ 𝑦𝐴 𝑤 < 𝑦 ) ) )
34 31 33 suplub ( ( ( 𝐴 ⊆ ℝ*𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ( ( 𝑥 ∈ ℝ*𝑥 < sup ( 𝐴 , ℝ* , < ) ) → ∃ 𝑦𝐴 𝑥 < 𝑦 ) )
35 24 29 34 mp2and ( ( ( 𝐴 ⊆ ℝ*𝑥 ∈ ℝ ) ∧ sup ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑦𝐴 𝑥 < 𝑦 )
36 35 exp31 ( 𝐴 ⊆ ℝ* → ( 𝑥 ∈ ℝ → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) )
37 36 com23 ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ( 𝑥 ∈ ℝ → ∃ 𝑦𝐴 𝑥 < 𝑦 ) ) )
38 37 ralrimdv ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ → ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ) )
39 22 38 impbid ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦𝐴 𝑥 < 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) )