| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							peano2re | 
							⊢ ( 𝑤  ∈  ℝ  →  ( 𝑤  +  1 )  ∈  ℝ )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							⊢ ( ( ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ∧  𝑤  ∈  ℝ )  →  ( 𝑤  +  1 )  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ∧  𝑤  ∈  ℝ )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  | 
						
						
							| 4 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( 𝑥  ≤  𝑦  ↔  ( 𝑤  +  1 )  ≤  𝑦 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rexbidv | 
							⊢ ( 𝑥  =  ( 𝑤  +  1 )  →  ( ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ↔  ∃ 𝑦  ∈  𝐴 ( 𝑤  +  1 )  ≤  𝑦 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rspcva | 
							⊢ ( ( ( 𝑤  +  1 )  ∈  ℝ  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  ∃ 𝑦  ∈  𝐴 ( 𝑤  +  1 )  ≤  𝑦 )  | 
						
						
							| 7 | 
							
								2 3 6
							 | 
							syl2anc | 
							⊢ ( ( ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑦  ∈  𝐴 ( 𝑤  +  1 )  ≤  𝑦 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑦  ∈  𝐴 ( 𝑤  +  1 )  ≤  𝑦 )  | 
						
						
							| 9 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝐴  ⊆  ℝ*  | 
						
						
							| 10 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑦 ℝ  | 
						
						
							| 11 | 
							
								
							 | 
							nfre1 | 
							⊢ Ⅎ 𝑦 ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  | 
						
						
							| 12 | 
							
								10 11
							 | 
							nfralw | 
							⊢ Ⅎ 𝑦 ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  | 
						
						
							| 13 | 
							
								9 12
							 | 
							nfan | 
							⊢ Ⅎ 𝑦 ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  | 
						
						
							| 14 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝑤  ∈  ℝ  | 
						
						
							| 15 | 
							
								13 14
							 | 
							nfan | 
							⊢ Ⅎ 𝑦 ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ℝ )  | 
						
						
							| 16 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  𝑤  ∈  ℝ )  | 
						
						
							| 17 | 
							
								
							 | 
							rexr | 
							⊢ ( 𝑤  ∈  ℝ  →  𝑤  ∈  ℝ* )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  𝑤  ∈  ℝ* )  | 
						
						
							| 19 | 
							
								1
							 | 
							rexrd | 
							⊢ ( 𝑤  ∈  ℝ  →  ( 𝑤  +  1 )  ∈  ℝ* )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							syl | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  ( 𝑤  +  1 )  ∈  ℝ* )  | 
						
						
							| 21 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  𝐴  ⊆  ℝ* )  | 
						
						
							| 22 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  𝑦  ∈  𝐴 )  | 
						
						
							| 23 | 
							
								
							 | 
							ssel2 | 
							⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 24 | 
							
								21 22 23
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 25 | 
							
								16
							 | 
							ltp1d | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  𝑤  <  ( 𝑤  +  1 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  ( 𝑤  +  1 )  ≤  𝑦 )  | 
						
						
							| 27 | 
							
								18 20 24 25 26
							 | 
							xrltletrd | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  ∧  𝑦  ∈  𝐴  ∧  ( 𝑤  +  1 )  ≤  𝑦 )  →  𝑤  <  𝑦 )  | 
						
						
							| 28 | 
							
								27
							 | 
							3exp | 
							⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝑤  ∈  ℝ )  →  ( 𝑦  ∈  𝐴  →  ( ( 𝑤  +  1 )  ≤  𝑦  →  𝑤  <  𝑦 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantlr | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ℝ )  →  ( 𝑦  ∈  𝐴  →  ( ( 𝑤  +  1 )  ≤  𝑦  →  𝑤  <  𝑦 ) ) )  | 
						
						
							| 30 | 
							
								15 29
							 | 
							reximdai | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ℝ )  →  ( ∃ 𝑦  ∈  𝐴 ( 𝑤  +  1 )  ≤  𝑦  →  ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦 ) )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							mpd | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦 )  | 
						
						
							| 32 | 
							
								31
							 | 
							ralrimiva | 
							⊢ ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  ∀ 𝑤  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦 )  | 
						
						
							| 33 | 
							
								32
							 | 
							ex | 
							⊢ ( 𝐴  ⊆  ℝ*  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  →  ∀ 𝑤  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤  <  𝑦  ↔  𝑥  <  𝑦 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							rexbidv | 
							⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦  ↔  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑤  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimpi | 
							⊢ ( ∀ 𝑤  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦  →  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  | 
						
						
							| 38 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝐴  ⊆  ℝ*  | 
						
						
							| 39 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦  | 
						
						
							| 40 | 
							
								38 39
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  | 
						
						
							| 41 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  ∧  𝑥  ∈  ℝ )  →  𝐴  ⊆  ℝ* )  | 
						
						
							| 42 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ )  | 
						
						
							| 43 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  | 
						
						
							| 45 | 
							
								
							 | 
							rexr | 
							⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* )  | 
						
						
							| 46 | 
							
								45
							 | 
							ad3antlr | 
							⊢ ( ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ℝ* )  | 
						
						
							| 47 | 
							
								23
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantllr | 
							⊢ ( ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 49 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  <  𝑦 )  →  𝑥  <  𝑦 )  | 
						
						
							| 50 | 
							
								46 48 49
							 | 
							xrltled | 
							⊢ ( ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  <  𝑦 )  →  𝑥  ≤  𝑦 )  | 
						
						
							| 51 | 
							
								50
							 | 
							ex | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  <  𝑦  →  𝑥  ≤  𝑦 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							reximdva | 
							⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦  →  ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantlr | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦  →  ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) )  | 
						
						
							| 54 | 
							
								44 53
							 | 
							mpd | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  | 
						
						
							| 55 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  ℝ )  ∧  ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  | 
						
						
							| 56 | 
							
								41 42 54 55
							 | 
							syl21anc | 
							⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  ∧  𝑥  ∈  ℝ )  →  ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  | 
						
						
							| 57 | 
							
								56
							 | 
							ex | 
							⊢ ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  →  ( 𝑥  ∈  ℝ  →  ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) )  | 
						
						
							| 58 | 
							
								40 57
							 | 
							ralrimi | 
							⊢ ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  <  𝑦 )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  | 
						
						
							| 59 | 
							
								37 58
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ⊆  ℝ*  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦 )  →  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  | 
						
						
							| 60 | 
							
								59
							 | 
							ex | 
							⊢ ( 𝐴  ⊆  ℝ*  →  ( ∀ 𝑤  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦  →  ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) )  | 
						
						
							| 61 | 
							
								33 60
							 | 
							impbid | 
							⊢ ( 𝐴  ⊆  ℝ*  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ↔  ∀ 𝑤  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							supxrunb2 | 
							⊢ ( 𝐴  ⊆  ℝ*  →  ( ∀ 𝑤  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑤  <  𝑦  ↔  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							bitrd | 
							⊢ ( 𝐴  ⊆  ℝ*  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  𝐴 𝑥  ≤  𝑦  ↔  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) )  |