| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sursubmefmnd.m | ⊢ 𝑀  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 2 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 3 |  | foeq1 | ⊢ ( ℎ  =  𝑥  →  ( ℎ : 𝐴 –onto→ 𝐴  ↔  𝑥 : 𝐴 –onto→ 𝐴 ) ) | 
						
							| 4 | 2 3 | elab | ⊢ ( 𝑥  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ↔  𝑥 : 𝐴 –onto→ 𝐴 ) | 
						
							| 5 |  | fof | ⊢ ( 𝑥 : 𝐴 –onto→ 𝐴  →  𝑥 : 𝐴 ⟶ 𝐴 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 7 | 1 6 | elefmndbas | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ↔  𝑥 : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 8 | 5 7 | imbitrrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥 : 𝐴 –onto→ 𝐴  →  𝑥  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 9 | 4 8 | biimtrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  →  𝑥  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 10 | 9 | ssrdv | ⊢ ( 𝐴  ∈  𝑉  →  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 11 | 1 | efmndid | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 12 |  | resiexg | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 )  ∈  V ) | 
						
							| 13 |  | f1oi | ⊢ (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | 
						
							| 14 |  | f1ofo | ⊢ ( (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴  →  (  I   ↾  𝐴 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 15 | 13 14 | mp1i | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 16 |  | foeq1 | ⊢ ( ℎ  =  (  I   ↾  𝐴 )  →  ( ℎ : 𝐴 –onto→ 𝐴  ↔  (  I   ↾  𝐴 ) : 𝐴 –onto→ 𝐴 ) ) | 
						
							| 17 | 12 15 16 | elabd | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) | 
						
							| 18 | 11 17 | eqeltrrd | ⊢ ( 𝐴  ∈  𝑉  →  ( 0g ‘ 𝑀 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) | 
						
							| 19 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 20 |  | foeq1 | ⊢ ( ℎ  =  𝑦  →  ( ℎ : 𝐴 –onto→ 𝐴  ↔  𝑦 : 𝐴 –onto→ 𝐴 ) ) | 
						
							| 21 | 19 20 | elab | ⊢ ( 𝑦  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ↔  𝑦 : 𝐴 –onto→ 𝐴 ) | 
						
							| 22 | 4 21 | anbi12i | ⊢ ( ( 𝑥  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ∧  𝑦  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } )  ↔  ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 ) ) | 
						
							| 23 |  | foco | ⊢ ( ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 )  →  ( 𝑥  ∘  𝑦 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 ) )  →  ( 𝑥  ∘  𝑦 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 25 |  | fof | ⊢ ( 𝑦 : 𝐴 –onto→ 𝐴  →  𝑦 : 𝐴 ⟶ 𝐴 ) | 
						
							| 26 | 5 25 | anim12i | ⊢ ( ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 )  →  ( 𝑥 : 𝐴 ⟶ 𝐴  ∧  𝑦 : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 27 | 1 6 | elefmndbas | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑦  ∈  ( Base ‘ 𝑀 )  ↔  𝑦 : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 28 | 7 27 | anbi12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) )  ↔  ( 𝑥 : 𝐴 ⟶ 𝐴  ∧  𝑦 : 𝐴 ⟶ 𝐴 ) ) ) | 
						
							| 29 | 26 28 | imbitrrid | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 )  →  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 32 | 1 6 31 | efmndov | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝑀 )  ∧  𝑦  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑥  ∘  𝑦 ) ) | 
						
							| 33 | 30 32 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑥  ∘  𝑦 ) ) | 
						
							| 34 | 33 | eleq1d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 ) )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ↔  ( 𝑥  ∘  𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) ) | 
						
							| 35 | 2 19 | coex | ⊢ ( 𝑥  ∘  𝑦 )  ∈  V | 
						
							| 36 |  | foeq1 | ⊢ ( ℎ  =  ( 𝑥  ∘  𝑦 )  →  ( ℎ : 𝐴 –onto→ 𝐴  ↔  ( 𝑥  ∘  𝑦 ) : 𝐴 –onto→ 𝐴 ) ) | 
						
							| 37 | 35 36 | elab | ⊢ ( ( 𝑥  ∘  𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ↔  ( 𝑥  ∘  𝑦 ) : 𝐴 –onto→ 𝐴 ) | 
						
							| 38 | 34 37 | bitrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 ) )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ↔  ( 𝑥  ∘  𝑦 ) : 𝐴 –onto→ 𝐴 ) ) | 
						
							| 39 | 24 38 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥 : 𝐴 –onto→ 𝐴  ∧  𝑦 : 𝐴 –onto→ 𝐴 )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) ) | 
						
							| 41 | 22 40 | biimtrid | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ∧  𝑦  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) ) | 
						
							| 42 | 41 | ralrimivv | ⊢ ( 𝐴  ∈  𝑉  →  ∀ 𝑥  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ∀ 𝑦  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) | 
						
							| 43 | 1 | efmndmnd | ⊢ ( 𝐴  ∈  𝑉  →  𝑀  ∈  Mnd ) | 
						
							| 44 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 45 | 6 44 31 | issubm | ⊢ ( 𝑀  ∈  Mnd  →  ( { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ∧  ∀ 𝑥  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ∀ 𝑦  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) ) ) | 
						
							| 46 | 43 45 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ∧  ∀ 𝑥  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ∀ 𝑦  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 } ) ) ) | 
						
							| 47 | 10 18 42 46 | mpbir3and | ⊢ ( 𝐴  ∈  𝑉  →  { ℎ  ∣  ℎ : 𝐴 –onto→ 𝐴 }  ∈  ( SubMnd ‘ 𝑀 ) ) |