Metamath Proof Explorer


Theorem svrelfun

Description: A single-valued relation is a function. (See fun2cnv for "single-valued.") Definition 6.4(4) of TakeutiZaring p. 24. (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion svrelfun ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ Fun 𝐴 ) )

Proof

Step Hyp Ref Expression
1 dffun6 ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) )
2 fun2cnv ( Fun 𝐴 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 )
3 2 anbi2i ( ( Rel 𝐴 ∧ Fun 𝐴 ) ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) )
4 1 3 bitr4i ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ Fun 𝐴 ) )