Step |
Hyp |
Ref |
Expression |
1 |
|
swoer.1 |
⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) |
2 |
|
swoer.2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) |
3 |
|
swoer.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) |
4 |
|
swoord.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) |
5 |
|
swoord.5 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
6 |
|
swoord.6 |
⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
7 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
8 |
|
difss |
⊢ ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) ⊆ ( 𝑋 × 𝑋 ) |
9 |
1 8
|
eqsstri |
⊢ 𝑅 ⊆ ( 𝑋 × 𝑋 ) |
10 |
9
|
ssbri |
⊢ ( 𝐴 𝑅 𝐵 → 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ) |
11 |
|
df-br |
⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
12 |
|
opelxp1 |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) → 𝐴 ∈ 𝑋 ) |
13 |
11 12
|
sylbi |
⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 → 𝐴 ∈ 𝑋 ) |
14 |
6 10 13
|
3syl |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
15 |
3
|
swopolem |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 < 𝐶 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐶 ) ) ) |
16 |
7 14 5 4 15
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐶 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐶 ) ) ) |
17 |
1
|
brdifun |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
18 |
14 4 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
19 |
6 18
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) |
20 |
|
orc |
⊢ ( 𝐴 < 𝐵 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) |
21 |
19 20
|
nsyl |
⊢ ( 𝜑 → ¬ 𝐴 < 𝐵 ) |
22 |
|
biorf |
⊢ ( ¬ 𝐴 < 𝐵 → ( 𝐵 < 𝐶 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐶 ) ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐶 ) ) ) |
24 |
16 23
|
sylibrd |
⊢ ( 𝜑 → ( 𝐴 < 𝐶 → 𝐵 < 𝐶 ) ) |
25 |
3
|
swopolem |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐵 < 𝐶 → ( 𝐵 < 𝐴 ∨ 𝐴 < 𝐶 ) ) ) |
26 |
7 4 5 14 25
|
syl13anc |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 → ( 𝐵 < 𝐴 ∨ 𝐴 < 𝐶 ) ) ) |
27 |
|
olc |
⊢ ( 𝐵 < 𝐴 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) |
28 |
19 27
|
nsyl |
⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
29 |
|
biorf |
⊢ ( ¬ 𝐵 < 𝐴 → ( 𝐴 < 𝐶 ↔ ( 𝐵 < 𝐴 ∨ 𝐴 < 𝐶 ) ) ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 𝐶 ↔ ( 𝐵 < 𝐴 ∨ 𝐴 < 𝐶 ) ) ) |
31 |
26 30
|
sylibrd |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
32 |
24 31
|
impbid |
⊢ ( 𝜑 → ( 𝐴 < 𝐶 ↔ 𝐵 < 𝐶 ) ) |