Step |
Hyp |
Ref |
Expression |
1 |
|
swopo.1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) |
2 |
|
swopo.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) |
3 |
|
id |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) |
4 |
3
|
ancli |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
5 |
1
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) |
6 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑧 ↔ 𝑥 𝑅 𝑧 ) ) |
7 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝑥 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑧 𝑅 𝑥 ) ) |
9 |
6 8
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ↔ ( 𝑥 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑥 ) ) ) |
10 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 𝑅 𝑧 ↔ 𝑥 𝑅 𝑥 ) ) |
11 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
12 |
11
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑧 𝑅 𝑥 ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑥 ) ) ) |
14 |
9 13
|
rspc2va |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) → ( 𝑥 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑥 ) ) |
15 |
4 5 14
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑥 → ¬ 𝑥 𝑅 𝑥 ) ) |
16 |
15
|
pm2.01d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) |
17 |
1
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 𝑅 𝑧 → ¬ 𝑧 𝑅 𝑦 ) ) |
18 |
2
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) |
19 |
18
|
orcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( 𝑧 𝑅 𝑦 ∨ 𝑥 𝑅 𝑧 ) ) |
20 |
19
|
ord |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( ¬ 𝑧 𝑅 𝑦 → 𝑥 𝑅 𝑧 ) ) |
21 |
20
|
expimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ∧ ¬ 𝑧 𝑅 𝑦 ) → 𝑥 𝑅 𝑧 ) ) |
22 |
17 21
|
sylan2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
23 |
16 22
|
ispod |
⊢ ( 𝜑 → 𝑅 Po 𝐴 ) |