| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swopo.1 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝑦 𝑅 𝑧  →  ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 2 |  | swopo.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝑥 𝑅 𝑦  →  ( 𝑥 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) ) ) | 
						
							| 3 |  | id | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐴 ) | 
						
							| 4 | 3 | ancli | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 5 | 1 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦 𝑅 𝑧  →  ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 6 |  | breq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦 𝑅 𝑧  ↔  𝑥 𝑅 𝑧 ) ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑧 𝑅 𝑦  ↔  𝑧 𝑅 𝑥 ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( 𝑦  =  𝑥  →  ( ¬  𝑧 𝑅 𝑦  ↔  ¬  𝑧 𝑅 𝑥 ) ) | 
						
							| 9 | 6 8 | imbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦 𝑅 𝑧  →  ¬  𝑧 𝑅 𝑦 )  ↔  ( 𝑥 𝑅 𝑧  →  ¬  𝑧 𝑅 𝑥 ) ) ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑥 𝑅 𝑧  ↔  𝑥 𝑅 𝑥 ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧 𝑅 𝑥  ↔  𝑥 𝑅 𝑥 ) ) | 
						
							| 12 | 11 | notbid | ⊢ ( 𝑧  =  𝑥  →  ( ¬  𝑧 𝑅 𝑥  ↔  ¬  𝑥 𝑅 𝑥 ) ) | 
						
							| 13 | 10 12 | imbi12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑥 𝑅 𝑧  →  ¬  𝑧 𝑅 𝑥 )  ↔  ( 𝑥 𝑅 𝑥  →  ¬  𝑥 𝑅 𝑥 ) ) ) | 
						
							| 14 | 9 13 | rspc2va | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦 𝑅 𝑧  →  ¬  𝑧 𝑅 𝑦 ) )  →  ( 𝑥 𝑅 𝑥  →  ¬  𝑥 𝑅 𝑥 ) ) | 
						
							| 15 | 4 5 14 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥 𝑅 𝑥  →  ¬  𝑥 𝑅 𝑥 ) ) | 
						
							| 16 | 15 | pm2.01d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ¬  𝑥 𝑅 𝑥 ) | 
						
							| 17 | 1 | 3adantr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝑦 𝑅 𝑧  →  ¬  𝑧 𝑅 𝑦 ) ) | 
						
							| 18 | 2 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  ( 𝑥 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) ) | 
						
							| 19 | 18 | orcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  ( 𝑧 𝑅 𝑦  ∨  𝑥 𝑅 𝑧 ) ) | 
						
							| 20 | 19 | ord | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  𝑥 𝑅 𝑦 )  →  ( ¬  𝑧 𝑅 𝑦  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 21 | 20 | expimpd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝑥 𝑅 𝑦  ∧  ¬  𝑧 𝑅 𝑦 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 22 | 17 21 | sylan2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 23 | 16 22 | ispod | ⊢ ( 𝜑  →  𝑅  Po  𝐴 ) |