Step |
Hyp |
Ref |
Expression |
1 |
|
swopolem.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) |
2 |
1
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) |
3 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝑅 𝑦 ↔ 𝑋 𝑅 𝑦 ) ) |
4 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝑅 𝑧 ↔ 𝑋 𝑅 𝑧 ) ) |
5 |
4
|
orbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ↔ ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) |
6 |
3 5
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ↔ ( 𝑋 𝑅 𝑦 → ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ) ) |
7 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝑅 𝑦 ↔ 𝑋 𝑅 𝑌 ) ) |
8 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝑌 ) ) |
9 |
8
|
orbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ↔ ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑌 ) ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 𝑅 𝑦 → ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) ↔ ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑌 ) ) ) ) |
11 |
|
breq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 𝑅 𝑧 ↔ 𝑋 𝑅 𝑍 ) ) |
12 |
|
breq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 𝑅 𝑌 ↔ 𝑍 𝑅 𝑌 ) ) |
13 |
11 12
|
orbi12d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑌 ) ↔ ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑧 ∨ 𝑧 𝑅 𝑌 ) ) ↔ ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) ) |
15 |
6 10 14
|
rspc3v |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ( 𝑥 𝑅 𝑧 ∨ 𝑧 𝑅 𝑦 ) ) → ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) ) |
16 |
2 15
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( 𝑋 𝑅 𝑌 → ( 𝑋 𝑅 𝑍 ∨ 𝑍 𝑅 𝑌 ) ) ) |