| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swopolem.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝑥 𝑅 𝑦  →  ( 𝑥 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) ) ) | 
						
							| 2 | 1 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ( 𝑥 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) ) ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 𝑅 𝑦  ↔  𝑋 𝑅 𝑦 ) ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 𝑅 𝑧  ↔  𝑋 𝑅 𝑧 ) ) | 
						
							| 5 | 4 | orbi1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 )  ↔  ( 𝑋 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) ) ) | 
						
							| 6 | 3 5 | imbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥 𝑅 𝑦  →  ( 𝑥 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) )  ↔  ( 𝑋 𝑅 𝑦  →  ( 𝑋 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) ) ) ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋 𝑅 𝑦  ↔  𝑋 𝑅 𝑌 ) ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑧 𝑅 𝑦  ↔  𝑧 𝑅 𝑌 ) ) | 
						
							| 9 | 8 | orbi2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑋 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 )  ↔  ( 𝑋 𝑅 𝑧  ∨  𝑧 𝑅 𝑌 ) ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑋 𝑅 𝑦  →  ( 𝑋 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) )  ↔  ( 𝑋 𝑅 𝑌  →  ( 𝑋 𝑅 𝑧  ∨  𝑧 𝑅 𝑌 ) ) ) ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑋 𝑅 𝑧  ↔  𝑋 𝑅 𝑍 ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑧 𝑅 𝑌  ↔  𝑍 𝑅 𝑌 ) ) | 
						
							| 13 | 11 12 | orbi12d | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑋 𝑅 𝑧  ∨  𝑧 𝑅 𝑌 )  ↔  ( 𝑋 𝑅 𝑍  ∨  𝑍 𝑅 𝑌 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑋 𝑅 𝑌  →  ( 𝑋 𝑅 𝑧  ∨  𝑧 𝑅 𝑌 ) )  ↔  ( 𝑋 𝑅 𝑌  →  ( 𝑋 𝑅 𝑍  ∨  𝑍 𝑅 𝑌 ) ) ) ) | 
						
							| 15 | 6 10 14 | rspc3v | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑍  ∈  𝐴 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ( 𝑥 𝑅 𝑧  ∨  𝑧 𝑅 𝑦 ) )  →  ( 𝑋 𝑅 𝑌  →  ( 𝑋 𝑅 𝑍  ∨  𝑍 𝑅 𝑌 ) ) ) ) | 
						
							| 16 | 2 15 | mpan9 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴  ∧  𝑍  ∈  𝐴 ) )  →  ( 𝑋 𝑅 𝑌  →  ( 𝑋 𝑅 𝑍  ∨  𝑍 𝑅 𝑌 ) ) ) |