Step |
Hyp |
Ref |
Expression |
1 |
|
opelxp |
⊢ ( 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ ( V × ( ℤ × ℤ ) ) ↔ ( 𝑆 ∈ V ∧ 〈 𝑋 , 𝑋 〉 ∈ ( ℤ × ℤ ) ) ) |
2 |
|
opelxp |
⊢ ( 〈 𝑋 , 𝑋 〉 ∈ ( ℤ × ℤ ) ↔ ( 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) ) |
3 |
|
swrdval |
⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = if ( ( 𝑋 ..^ 𝑋 ) ⊆ dom 𝑆 , ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) , ∅ ) ) |
4 |
|
fzo0 |
⊢ ( 𝑋 ..^ 𝑋 ) = ∅ |
5 |
|
0ss |
⊢ ∅ ⊆ dom 𝑆 |
6 |
4 5
|
eqsstri |
⊢ ( 𝑋 ..^ 𝑋 ) ⊆ dom 𝑆 |
7 |
6
|
iftruei |
⊢ if ( ( 𝑋 ..^ 𝑋 ) ⊆ dom 𝑆 , ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) , ∅ ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
8 |
|
zcn |
⊢ ( 𝑋 ∈ ℤ → 𝑋 ∈ ℂ ) |
9 |
8
|
subidd |
⊢ ( 𝑋 ∈ ℤ → ( 𝑋 − 𝑋 ) = 0 ) |
10 |
9
|
oveq2d |
⊢ ( 𝑋 ∈ ℤ → ( 0 ..^ ( 𝑋 − 𝑋 ) ) = ( 0 ..^ 0 ) ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 0 ..^ ( 𝑋 − 𝑋 ) ) = ( 0 ..^ 0 ) ) |
12 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
13 |
11 12
|
eqtrdi |
⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 0 ..^ ( 𝑋 − 𝑋 ) ) = ∅ ) |
14 |
13
|
mpteq1d |
⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) ) |
15 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) = ∅ |
16 |
14 15
|
eqtrdi |
⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) = ∅ ) |
17 |
7 16
|
eqtrid |
⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → if ( ( 𝑋 ..^ 𝑋 ) ⊆ dom 𝑆 , ( 𝑥 ∈ ( 0 ..^ ( 𝑋 − 𝑋 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) , ∅ ) = ∅ ) |
18 |
3 17
|
eqtrd |
⊢ ( ( 𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
19 |
18
|
3expb |
⊢ ( ( 𝑆 ∈ V ∧ ( 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ ) ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
20 |
2 19
|
sylan2b |
⊢ ( ( 𝑆 ∈ V ∧ 〈 𝑋 , 𝑋 〉 ∈ ( ℤ × ℤ ) ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
21 |
1 20
|
sylbi |
⊢ ( 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ ( V × ( ℤ × ℤ ) ) → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
22 |
|
df-substr |
⊢ substr = ( 𝑠 ∈ V , 𝑏 ∈ ( ℤ × ℤ ) ↦ if ( ( ( 1st ‘ 𝑏 ) ..^ ( 2nd ‘ 𝑏 ) ) ⊆ dom 𝑠 , ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) , ∅ ) ) |
23 |
|
ovex |
⊢ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ∈ V |
24 |
23
|
mptex |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) ∈ V |
25 |
|
0ex |
⊢ ∅ ∈ V |
26 |
24 25
|
ifex |
⊢ if ( ( ( 1st ‘ 𝑏 ) ..^ ( 2nd ‘ 𝑏 ) ) ⊆ dom 𝑠 , ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) , ∅ ) ∈ V |
27 |
22 26
|
dmmpo |
⊢ dom substr = ( V × ( ℤ × ℤ ) ) |
28 |
21 27
|
eleq2s |
⊢ ( 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ dom substr → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
29 |
|
df-ov |
⊢ ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ( substr ‘ 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ) |
30 |
|
ndmfv |
⊢ ( ¬ 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ dom substr → ( substr ‘ 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ) = ∅ ) |
31 |
29 30
|
eqtrid |
⊢ ( ¬ 〈 𝑆 , 〈 𝑋 , 𝑋 〉 〉 ∈ dom substr → ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ ) |
32 |
28 31
|
pm2.61i |
⊢ ( 𝑆 substr 〈 𝑋 , 𝑋 〉 ) = ∅ |