Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) |
2 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
3 |
|
1z |
⊢ 1 ∈ ℤ |
4 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
5 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝑊 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) ) |
6 |
3 4 5
|
sylancr |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ) ) |
7 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
8 |
7
|
a1i |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 + 1 ) = 2 ) |
9 |
8
|
breq1d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) ↔ 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
10 |
9
|
biimpd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( 1 + 1 ) ≤ ( ♯ ‘ 𝑊 ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
11 |
6 10
|
sylbid |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
12 |
11
|
imp |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) |
13 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
14 |
13
|
jctl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
16 |
|
nn0sub |
⊢ ( ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 2 ≤ ( ♯ ‘ 𝑊 ) ↔ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 2 ≤ ( ♯ ‘ 𝑊 ) ↔ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) ) |
18 |
12 17
|
mpbid |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) |
19 |
2 18
|
sylan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ) |
20 |
|
0red |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → 0 ∈ ℝ ) |
21 |
|
1red |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → 1 ∈ ℝ ) |
22 |
|
zre |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
23 |
20 21 22
|
3jca |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) ) |
24 |
|
0lt1 |
⊢ 0 < 1 |
25 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 0 < ( ♯ ‘ 𝑊 ) ) ) |
26 |
25
|
expd |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( 0 < 1 → ( 1 < ( ♯ ‘ 𝑊 ) → 0 < ( ♯ ‘ 𝑊 ) ) ) ) |
27 |
23 24 26
|
mpisyl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 1 < ( ♯ ‘ 𝑊 ) → 0 < ( ♯ ‘ 𝑊 ) ) ) |
28 |
|
elnnz |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑊 ) ) ) |
29 |
28
|
simplbi2 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 < ( ♯ ‘ 𝑊 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
30 |
27 29
|
syld |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 1 < ( ♯ ‘ 𝑊 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
31 |
4 30
|
syl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑊 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
32 |
31
|
imp |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
33 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
35 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
36 |
|
2cn |
⊢ 2 ∈ ℂ |
37 |
36
|
a1i |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 2 ∈ ℂ ) |
38 |
|
1cnd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → 1 ∈ ℂ ) |
39 |
35 37 38
|
3jca |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) ) |
40 |
|
1e2m1 |
⊢ 1 = ( 2 − 1 ) |
41 |
40
|
a1i |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) → 1 = ( 2 − 1 ) ) |
42 |
41
|
oveq2d |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) ) |
43 |
|
subsub |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
44 |
42 43
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
45 |
39 44
|
syl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
46 |
45
|
eqcomd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
47 |
46
|
eleq1d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
48 |
47
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
49 |
34 48
|
mpbird |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
50 |
2 49
|
sylan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
51 |
1 19 50
|
3jca |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ∧ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
52 |
|
swrds2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 2 ) ∈ ℕ0 ∧ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ”〉 ) |
53 |
51 52
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ”〉 ) |
54 |
35 36
|
jctir |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ) ) |
55 |
|
npcan |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) = ( ♯ ‘ 𝑊 ) ) |
56 |
55
|
eqcomd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) ) |
57 |
2 54 56
|
3syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) ) |
59 |
58
|
opeq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) 〉 ) |
60 |
59
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 2 ) 〉 ) ) |
61 |
|
eqidd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ) |
62 |
|
lsw |
⊢ ( 𝑊 ∈ Word 𝑉 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
63 |
39 43
|
syl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
64 |
63
|
eqcomd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) ) |
65 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
66 |
65
|
a1i |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 2 − 1 ) = 1 ) |
67 |
66
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) − ( 2 − 1 ) ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
68 |
64 67
|
eqtrd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
69 |
2 68
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
70 |
69
|
eqcomd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) |
71 |
70
|
fveq2d |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ) |
72 |
62 71
|
eqtrd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ) |
74 |
61 73
|
s2eqd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 2 ) + 1 ) ) ”〉 ) |
75 |
53 60 74
|
3eqtr4d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 2 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 2 ) ) ( lastS ‘ 𝑊 ) ”〉 ) |