| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatcl | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( 𝑆  ++  𝑇 )  ∈  Word  𝐵 ) | 
						
							| 2 |  | swrdcl | ⊢ ( ( 𝑆  ++  𝑇 )  ∈  Word  𝐵  →  ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 )  ∈  Word  𝐵 ) | 
						
							| 3 |  | wrdfn | ⊢ ( ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 )  ∈  Word  𝐵  →  ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 )  Fn  ( 0 ..^ ( ♯ ‘ ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) ) ) ) | 
						
							| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 )  Fn  ( 0 ..^ ( ♯ ‘ ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) ) ) ) | 
						
							| 5 |  | lencl | ⊢ ( 𝑆  ∈  Word  𝐵  →  ( ♯ ‘ 𝑆 )  ∈  ℕ0 ) | 
						
							| 6 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 7 | 5 6 | eleqtrdi | ⊢ ( 𝑆  ∈  Word  𝐵  →  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 9 | 5 | nn0zd | ⊢ ( 𝑆  ∈  Word  𝐵  →  ( ♯ ‘ 𝑆 )  ∈  ℤ ) | 
						
							| 10 | 9 | uzidd | ⊢ ( 𝑆  ∈  Word  𝐵  →  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 11 |  | lencl | ⊢ ( 𝑇  ∈  Word  𝐵  →  ( ♯ ‘ 𝑇 )  ∈  ℕ0 ) | 
						
							| 12 |  | uzaddcl | ⊢ ( ( ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) )  ∧  ( ♯ ‘ 𝑇 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 14 |  | elfzuzb | ⊢ ( ( ♯ ‘ 𝑆 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) )  ↔  ( ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 0 )  ∧  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 15 | 8 13 14 | sylanbrc | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ♯ ‘ 𝑆 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) ) ) | 
						
							| 16 |  | nn0addcl | ⊢ ( ( ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑇 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ℕ0 ) | 
						
							| 17 | 5 11 16 | syl2an | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ℕ0 ) | 
						
							| 18 | 17 6 | eleqtrdi | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 19 | 17 | nn0zd | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ℤ ) | 
						
							| 20 | 19 | uzidd | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) ) ) | 
						
							| 21 |  | elfzuzb | ⊢ ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( 0 ... ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) )  ↔  ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( ℤ≥ ‘ 0 )  ∧  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) ) ) ) | 
						
							| 22 | 18 20 21 | sylanbrc | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( 0 ... ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) ) ) | 
						
							| 23 |  | ccatlen | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ♯ ‘ ( 𝑆  ++  𝑇 ) )  =  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( 0 ... ( ♯ ‘ ( 𝑆  ++  𝑇 ) ) )  =  ( 0 ... ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) ) ) | 
						
							| 25 | 22 24 | eleqtrrd | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( 0 ... ( ♯ ‘ ( 𝑆  ++  𝑇 ) ) ) ) | 
						
							| 26 |  | swrdlen | ⊢ ( ( ( 𝑆  ++  𝑇 )  ∈  Word  𝐵  ∧  ( ♯ ‘ 𝑆 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) )  ∧  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( 0 ... ( ♯ ‘ ( 𝑆  ++  𝑇 ) ) ) )  →  ( ♯ ‘ ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) )  =  ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  −  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 27 | 1 15 25 26 | syl3anc | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ♯ ‘ ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) )  =  ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  −  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 28 | 5 | nn0cnd | ⊢ ( 𝑆  ∈  Word  𝐵  →  ( ♯ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 29 | 11 | nn0cnd | ⊢ ( 𝑇  ∈  Word  𝐵  →  ( ♯ ‘ 𝑇 )  ∈  ℂ ) | 
						
							| 30 |  | pncan2 | ⊢ ( ( ( ♯ ‘ 𝑆 )  ∈  ℂ  ∧  ( ♯ ‘ 𝑇 )  ∈  ℂ )  →  ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  −  ( ♯ ‘ 𝑆 ) )  =  ( ♯ ‘ 𝑇 ) ) | 
						
							| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  −  ( ♯ ‘ 𝑆 ) )  =  ( ♯ ‘ 𝑇 ) ) | 
						
							| 32 | 27 31 | eqtrd | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ♯ ‘ ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) )  =  ( ♯ ‘ 𝑇 ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( 0 ..^ ( ♯ ‘ ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) ) )  =  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 34 | 33 | fneq2d | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 )  Fn  ( 0 ..^ ( ♯ ‘ ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) ) )  ↔  ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 )  Fn  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) ) | 
						
							| 35 | 4 34 | mpbid | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 )  Fn  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 36 |  | wrdfn | ⊢ ( 𝑇  ∈  Word  𝐵  →  𝑇  Fn  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  𝑇  Fn  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 38 | 1 15 25 | 3jca | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( 𝑆  ++  𝑇 )  ∈  Word  𝐵  ∧  ( ♯ ‘ 𝑆 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) )  ∧  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( 0 ... ( ♯ ‘ ( 𝑆  ++  𝑇 ) ) ) ) ) | 
						
							| 39 | 31 | oveq2d | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( 0 ..^ ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  −  ( ♯ ‘ 𝑆 ) ) )  =  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 40 | 39 | eleq2d | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( 𝑘  ∈  ( 0 ..^ ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  −  ( ♯ ‘ 𝑆 ) ) )  ↔  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) ) | 
						
							| 41 | 40 | biimpar | ⊢ ( ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  ∧  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) )  →  𝑘  ∈  ( 0 ..^ ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  −  ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 42 |  | swrdfv | ⊢ ( ( ( ( 𝑆  ++  𝑇 )  ∈  Word  𝐵  ∧  ( ♯ ‘ 𝑆 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) )  ∧  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  ∈  ( 0 ... ( ♯ ‘ ( 𝑆  ++  𝑇 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  −  ( ♯ ‘ 𝑆 ) ) ) )  →  ( ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) ‘ 𝑘 )  =  ( ( 𝑆  ++  𝑇 ) ‘ ( 𝑘  +  ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 43 | 38 41 42 | syl2an2r | ⊢ ( ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  ∧  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) )  →  ( ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) ‘ 𝑘 )  =  ( ( 𝑆  ++  𝑇 ) ‘ ( 𝑘  +  ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 44 |  | ccatval3 | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵  ∧  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) )  →  ( ( 𝑆  ++  𝑇 ) ‘ ( 𝑘  +  ( ♯ ‘ 𝑆 ) ) )  =  ( 𝑇 ‘ 𝑘 ) ) | 
						
							| 45 | 44 | 3expa | ⊢ ( ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  ∧  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) )  →  ( ( 𝑆  ++  𝑇 ) ‘ ( 𝑘  +  ( ♯ ‘ 𝑆 ) ) )  =  ( 𝑇 ‘ 𝑘 ) ) | 
						
							| 46 | 43 45 | eqtrd | ⊢ ( ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  ∧  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑇 ) ) )  →  ( ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 ) ‘ 𝑘 )  =  ( 𝑇 ‘ 𝑘 ) ) | 
						
							| 47 | 35 37 46 | eqfnfvd | ⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( 𝑆  ++  𝑇 )  substr  〈 ( ♯ ‘ 𝑆 ) ,  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) 〉 )  =  𝑇 ) |