| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdccatin2.l |
⊢ 𝐿 = ( ♯ ‘ 𝐴 ) |
| 2 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 3 |
|
nn0le0eq0 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐵 ) ≤ 0 ↔ ( ♯ ‘ 𝐵 ) = 0 ) ) |
| 4 |
3
|
biimpd |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( ♯ ‘ 𝐵 ) = 0 ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( ♯ ‘ 𝐵 ) = 0 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( ♯ ‘ 𝐵 ) = 0 ) ) |
| 7 |
|
hasheq0 |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) ) |
| 8 |
7
|
biimpd |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐵 ) = 0 → 𝐵 = ∅ ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐵 ) = 0 → 𝐵 = ∅ ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) → 𝐵 = ∅ ) |
| 11 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 12 |
1
|
eqcomi |
⊢ ( ♯ ‘ 𝐴 ) = 𝐿 |
| 13 |
12
|
eleq1i |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ 𝐿 ∈ ℕ0 ) |
| 14 |
|
nn0re |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) |
| 15 |
|
elfz2nn0 |
⊢ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝐿 + 0 ) ∈ ℕ0 ∧ 𝑀 ≤ ( 𝐿 + 0 ) ) ) |
| 16 |
|
recn |
⊢ ( 𝐿 ∈ ℝ → 𝐿 ∈ ℂ ) |
| 17 |
16
|
addridd |
⊢ ( 𝐿 ∈ ℝ → ( 𝐿 + 0 ) = 𝐿 ) |
| 18 |
17
|
breq2d |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ≤ ( 𝐿 + 0 ) ↔ 𝑀 ≤ 𝐿 ) ) |
| 19 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
| 20 |
19
|
anim1i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℝ ) → ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
| 21 |
20
|
ancoms |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
| 22 |
|
letri3 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑀 = 𝐿 ↔ ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀 ) ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 = 𝐿 ↔ ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀 ) ) ) |
| 24 |
23
|
biimprd |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀 ) → 𝑀 = 𝐿 ) ) |
| 25 |
24
|
exp4b |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐿 → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) ) |
| 26 |
25
|
com23 |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ≤ 𝐿 → ( 𝑀 ∈ ℕ0 → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) ) |
| 27 |
18 26
|
sylbid |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ≤ ( 𝐿 + 0 ) → ( 𝑀 ∈ ℕ0 → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) ) |
| 28 |
27
|
com3l |
⊢ ( 𝑀 ≤ ( 𝐿 + 0 ) → ( 𝑀 ∈ ℕ0 → ( 𝐿 ∈ ℝ → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) ) |
| 29 |
28
|
impcom |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( 𝐿 + 0 ) ) → ( 𝐿 ∈ ℝ → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
| 30 |
29
|
3adant2 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝐿 + 0 ) ∈ ℕ0 ∧ 𝑀 ≤ ( 𝐿 + 0 ) ) → ( 𝐿 ∈ ℝ → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
| 31 |
30
|
com12 |
⊢ ( 𝐿 ∈ ℝ → ( ( 𝑀 ∈ ℕ0 ∧ ( 𝐿 + 0 ) ∈ ℕ0 ∧ 𝑀 ≤ ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
| 32 |
15 31
|
biimtrid |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
| 33 |
14 32
|
syl |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
| 34 |
13 33
|
sylbi |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
| 35 |
11 34
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
| 36 |
35
|
imp |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) |
| 37 |
|
elfznn0 |
⊢ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → 𝑀 ∈ ℕ0 ) |
| 38 |
|
swrd00 |
⊢ ( ∅ substr 〈 0 , 0 〉 ) = ∅ |
| 39 |
|
swrd00 |
⊢ ( 𝐴 substr 〈 𝐿 , 𝐿 〉 ) = ∅ |
| 40 |
38 39
|
eqtr4i |
⊢ ( ∅ substr 〈 0 , 0 〉 ) = ( 𝐴 substr 〈 𝐿 , 𝐿 〉 ) |
| 41 |
|
nn0cn |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ ) |
| 42 |
41
|
subidd |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐿 − 𝐿 ) = 0 ) |
| 43 |
42
|
opeq1d |
⊢ ( 𝐿 ∈ ℕ0 → 〈 ( 𝐿 − 𝐿 ) , 0 〉 = 〈 0 , 0 〉 ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝐿 ∈ ℕ0 → ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) = ( ∅ substr 〈 0 , 0 〉 ) ) |
| 45 |
41
|
addridd |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐿 + 0 ) = 𝐿 ) |
| 46 |
45
|
opeq2d |
⊢ ( 𝐿 ∈ ℕ0 → 〈 𝐿 , ( 𝐿 + 0 ) 〉 = 〈 𝐿 , 𝐿 〉 ) |
| 47 |
46
|
oveq2d |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) = ( 𝐴 substr 〈 𝐿 , 𝐿 〉 ) ) |
| 48 |
40 44 47
|
3eqtr4a |
⊢ ( 𝐿 ∈ ℕ0 → ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) ) |
| 49 |
48
|
a1i |
⊢ ( 𝑀 = 𝐿 → ( 𝐿 ∈ ℕ0 → ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 50 |
|
eleq1 |
⊢ ( 𝑀 = 𝐿 → ( 𝑀 ∈ ℕ0 ↔ 𝐿 ∈ ℕ0 ) ) |
| 51 |
|
oveq1 |
⊢ ( 𝑀 = 𝐿 → ( 𝑀 − 𝐿 ) = ( 𝐿 − 𝐿 ) ) |
| 52 |
51
|
opeq1d |
⊢ ( 𝑀 = 𝐿 → 〈 ( 𝑀 − 𝐿 ) , 0 〉 = 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) |
| 53 |
52
|
oveq2d |
⊢ ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) ) |
| 54 |
|
opeq1 |
⊢ ( 𝑀 = 𝐿 → 〈 𝑀 , ( 𝐿 + 0 ) 〉 = 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝑀 = 𝐿 → ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) = ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) ) |
| 56 |
53 55
|
eqeq12d |
⊢ ( 𝑀 = 𝐿 → ( ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ↔ ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 57 |
49 50 56
|
3imtr4d |
⊢ ( 𝑀 = 𝐿 → ( 𝑀 ∈ ℕ0 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 58 |
57
|
com12 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 59 |
58
|
a1d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐴 ∈ Word 𝑉 → ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) ) |
| 60 |
37 59
|
syl |
⊢ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐴 ∈ Word 𝑉 → ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) ) |
| 61 |
60
|
impcom |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 62 |
36 61
|
syld |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → ( 𝐿 ≤ 𝑀 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 63 |
62
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) ∧ 𝐿 ≤ 𝑀 ) → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
| 64 |
|
swrdcl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ∈ Word 𝑉 ) |
| 65 |
|
ccatrid |
⊢ ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ∈ Word 𝑉 → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ) |
| 66 |
64 65
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ) |
| 67 |
13 41
|
sylbi |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → 𝐿 ∈ ℂ ) |
| 68 |
11 67
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → 𝐿 ∈ ℂ ) |
| 69 |
|
addrid |
⊢ ( 𝐿 ∈ ℂ → ( 𝐿 + 0 ) = 𝐿 ) |
| 70 |
69
|
eqcomd |
⊢ ( 𝐿 ∈ ℂ → 𝐿 = ( 𝐿 + 0 ) ) |
| 71 |
68 70
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → 𝐿 = ( 𝐿 + 0 ) ) |
| 72 |
71
|
opeq2d |
⊢ ( 𝐴 ∈ Word 𝑉 → 〈 𝑀 , 𝐿 〉 = 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) |
| 73 |
72
|
oveq2d |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
| 74 |
66 73
|
eqtrd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) ∧ ¬ 𝐿 ≤ 𝑀 ) → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
| 77 |
63 76
|
ifeqda |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
| 78 |
77
|
ex |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 79 |
78
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) ∧ 𝐵 = ∅ ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 80 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝐿 + ( ♯ ‘ 𝐵 ) ) = ( 𝐿 + 0 ) ) |
| 81 |
80
|
oveq2d |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) = ( 0 ... ( 𝐿 + 0 ) ) ) |
| 82 |
81
|
eleq2d |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ↔ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ↔ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) ) |
| 84 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
| 85 |
|
opeq2 |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 = 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) |
| 86 |
85
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 = 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) |
| 87 |
84 86
|
oveq12d |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) = ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) ) |
| 88 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) = ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) |
| 89 |
88
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) = ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) |
| 90 |
87 89
|
ifeq12d |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) ) |
| 91 |
80
|
opeq2d |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 = 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) |
| 92 |
91
|
oveq2d |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
| 93 |
92
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
| 94 |
90 93
|
eqeq12d |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ↔ if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
| 95 |
83 94
|
imbi12d |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ↔ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) ) |
| 96 |
95
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) ∧ 𝐵 = ∅ ) → ( ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ↔ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) ) |
| 97 |
79 96
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) ∧ 𝐵 = ∅ ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
| 98 |
10 97
|
mpdan |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
| 99 |
98
|
ex |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
| 100 |
6 99
|
syld |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
| 101 |
100
|
com23 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
| 102 |
101
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
| 103 |
102
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
| 104 |
1
|
eleq1i |
⊢ ( 𝐿 ∈ ℕ0 ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 105 |
104 14
|
sylbir |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → 𝐿 ∈ ℝ ) |
| 106 |
11 105
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → 𝐿 ∈ ℝ ) |
| 107 |
2
|
nn0red |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 108 |
|
leaddle0 |
⊢ ( ( 𝐿 ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ↔ ( ♯ ‘ 𝐵 ) ≤ 0 ) ) |
| 109 |
106 107 108
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ↔ ( ♯ ‘ 𝐵 ) ≤ 0 ) ) |
| 110 |
|
pm2.24 |
⊢ ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( ¬ ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
| 111 |
109 110
|
biimtrdi |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 → ( ¬ ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
| 112 |
111
|
adantr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 → ( ¬ ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
| 113 |
112
|
imp |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ) → ( ¬ ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
| 114 |
103 113
|
pm2.61d |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) |