Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
⊢ 𝐿 = ( ♯ ‘ 𝐴 ) |
2 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
3 |
|
nn0le0eq0 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐵 ) ≤ 0 ↔ ( ♯ ‘ 𝐵 ) = 0 ) ) |
4 |
3
|
biimpd |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( ♯ ‘ 𝐵 ) = 0 ) ) |
5 |
2 4
|
syl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( ♯ ‘ 𝐵 ) = 0 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( ♯ ‘ 𝐵 ) = 0 ) ) |
7 |
|
hasheq0 |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) ) |
8 |
7
|
biimpd |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐵 ) = 0 → 𝐵 = ∅ ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐵 ) = 0 → 𝐵 = ∅ ) ) |
10 |
9
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) → 𝐵 = ∅ ) |
11 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
12 |
1
|
eqcomi |
⊢ ( ♯ ‘ 𝐴 ) = 𝐿 |
13 |
12
|
eleq1i |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ 𝐿 ∈ ℕ0 ) |
14 |
|
nn0re |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) |
15 |
|
elfz2nn0 |
⊢ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝐿 + 0 ) ∈ ℕ0 ∧ 𝑀 ≤ ( 𝐿 + 0 ) ) ) |
16 |
|
recn |
⊢ ( 𝐿 ∈ ℝ → 𝐿 ∈ ℂ ) |
17 |
16
|
addid1d |
⊢ ( 𝐿 ∈ ℝ → ( 𝐿 + 0 ) = 𝐿 ) |
18 |
17
|
breq2d |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ≤ ( 𝐿 + 0 ) ↔ 𝑀 ≤ 𝐿 ) ) |
19 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
20 |
19
|
anim1i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℝ ) → ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
21 |
20
|
ancoms |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
22 |
|
letri3 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑀 = 𝐿 ↔ ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀 ) ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 = 𝐿 ↔ ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀 ) ) ) |
24 |
23
|
biimprd |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑀 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀 ) → 𝑀 = 𝐿 ) ) |
25 |
24
|
exp4b |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐿 → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) ) |
26 |
25
|
com23 |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ≤ 𝐿 → ( 𝑀 ∈ ℕ0 → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) ) |
27 |
18 26
|
sylbid |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ≤ ( 𝐿 + 0 ) → ( 𝑀 ∈ ℕ0 → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) ) |
28 |
27
|
com3l |
⊢ ( 𝑀 ≤ ( 𝐿 + 0 ) → ( 𝑀 ∈ ℕ0 → ( 𝐿 ∈ ℝ → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) ) |
29 |
28
|
impcom |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( 𝐿 + 0 ) ) → ( 𝐿 ∈ ℝ → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
30 |
29
|
3adant2 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝐿 + 0 ) ∈ ℕ0 ∧ 𝑀 ≤ ( 𝐿 + 0 ) ) → ( 𝐿 ∈ ℝ → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
31 |
30
|
com12 |
⊢ ( 𝐿 ∈ ℝ → ( ( 𝑀 ∈ ℕ0 ∧ ( 𝐿 + 0 ) ∈ ℕ0 ∧ 𝑀 ≤ ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
32 |
15 31
|
syl5bi |
⊢ ( 𝐿 ∈ ℝ → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
33 |
14 32
|
syl |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
34 |
13 33
|
sylbi |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
35 |
11 34
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) ) |
36 |
35
|
imp |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → ( 𝐿 ≤ 𝑀 → 𝑀 = 𝐿 ) ) |
37 |
|
elfznn0 |
⊢ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → 𝑀 ∈ ℕ0 ) |
38 |
|
swrd00 |
⊢ ( ∅ substr 〈 0 , 0 〉 ) = ∅ |
39 |
|
swrd00 |
⊢ ( 𝐴 substr 〈 𝐿 , 𝐿 〉 ) = ∅ |
40 |
38 39
|
eqtr4i |
⊢ ( ∅ substr 〈 0 , 0 〉 ) = ( 𝐴 substr 〈 𝐿 , 𝐿 〉 ) |
41 |
|
nn0cn |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ ) |
42 |
41
|
subidd |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐿 − 𝐿 ) = 0 ) |
43 |
42
|
opeq1d |
⊢ ( 𝐿 ∈ ℕ0 → 〈 ( 𝐿 − 𝐿 ) , 0 〉 = 〈 0 , 0 〉 ) |
44 |
43
|
oveq2d |
⊢ ( 𝐿 ∈ ℕ0 → ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) = ( ∅ substr 〈 0 , 0 〉 ) ) |
45 |
41
|
addid1d |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐿 + 0 ) = 𝐿 ) |
46 |
45
|
opeq2d |
⊢ ( 𝐿 ∈ ℕ0 → 〈 𝐿 , ( 𝐿 + 0 ) 〉 = 〈 𝐿 , 𝐿 〉 ) |
47 |
46
|
oveq2d |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) = ( 𝐴 substr 〈 𝐿 , 𝐿 〉 ) ) |
48 |
40 44 47
|
3eqtr4a |
⊢ ( 𝐿 ∈ ℕ0 → ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) ) |
49 |
48
|
a1i |
⊢ ( 𝑀 = 𝐿 → ( 𝐿 ∈ ℕ0 → ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) ) ) |
50 |
|
eleq1 |
⊢ ( 𝑀 = 𝐿 → ( 𝑀 ∈ ℕ0 ↔ 𝐿 ∈ ℕ0 ) ) |
51 |
|
oveq1 |
⊢ ( 𝑀 = 𝐿 → ( 𝑀 − 𝐿 ) = ( 𝐿 − 𝐿 ) ) |
52 |
51
|
opeq1d |
⊢ ( 𝑀 = 𝐿 → 〈 ( 𝑀 − 𝐿 ) , 0 〉 = 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) |
53 |
52
|
oveq2d |
⊢ ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) ) |
54 |
|
opeq1 |
⊢ ( 𝑀 = 𝐿 → 〈 𝑀 , ( 𝐿 + 0 ) 〉 = 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) |
55 |
54
|
oveq2d |
⊢ ( 𝑀 = 𝐿 → ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) = ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) ) |
56 |
53 55
|
eqeq12d |
⊢ ( 𝑀 = 𝐿 → ( ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ↔ ( ∅ substr 〈 ( 𝐿 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝐿 , ( 𝐿 + 0 ) 〉 ) ) ) |
57 |
49 50 56
|
3imtr4d |
⊢ ( 𝑀 = 𝐿 → ( 𝑀 ∈ ℕ0 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
58 |
57
|
com12 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
59 |
58
|
a1d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐴 ∈ Word 𝑉 → ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) ) |
60 |
37 59
|
syl |
⊢ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → ( 𝐴 ∈ Word 𝑉 → ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) ) |
61 |
60
|
impcom |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → ( 𝑀 = 𝐿 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
62 |
36 61
|
syld |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → ( 𝐿 ≤ 𝑀 → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
63 |
62
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) ∧ 𝐿 ≤ 𝑀 ) → ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
64 |
|
swrdcl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ∈ Word 𝑉 ) |
65 |
|
ccatrid |
⊢ ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ∈ Word 𝑉 → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ) |
66 |
64 65
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ) |
67 |
13 41
|
sylbi |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → 𝐿 ∈ ℂ ) |
68 |
11 67
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → 𝐿 ∈ ℂ ) |
69 |
|
addid1 |
⊢ ( 𝐿 ∈ ℂ → ( 𝐿 + 0 ) = 𝐿 ) |
70 |
69
|
eqcomd |
⊢ ( 𝐿 ∈ ℂ → 𝐿 = ( 𝐿 + 0 ) ) |
71 |
68 70
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → 𝐿 = ( 𝐿 + 0 ) ) |
72 |
71
|
opeq2d |
⊢ ( 𝐴 ∈ Word 𝑉 → 〈 𝑀 , 𝐿 〉 = 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) |
73 |
72
|
oveq2d |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
74 |
66 73
|
eqtrd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
76 |
75
|
adantr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) ∧ ¬ 𝐿 ≤ 𝑀 ) → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
77 |
63 76
|
ifeqda |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
78 |
77
|
ex |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
79 |
78
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) ∧ 𝐵 = ∅ ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
80 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝐿 + ( ♯ ‘ 𝐵 ) ) = ( 𝐿 + 0 ) ) |
81 |
80
|
oveq2d |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) = ( 0 ... ( 𝐿 + 0 ) ) ) |
82 |
81
|
eleq2d |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ↔ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) ) |
83 |
82
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ↔ 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) ) ) |
84 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
85 |
|
opeq2 |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 = 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) |
86 |
85
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 = 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) |
87 |
84 86
|
oveq12d |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) = ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) ) |
88 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) = ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) |
89 |
88
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) = ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) |
90 |
87 89
|
ifeq12d |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) ) |
91 |
80
|
opeq2d |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 = 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) |
92 |
91
|
oveq2d |
⊢ ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
93 |
92
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) |
94 |
90 93
|
eqeq12d |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ↔ if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) |
95 |
83 94
|
imbi12d |
⊢ ( ( ( ♯ ‘ 𝐵 ) = 0 ∧ 𝐵 = ∅ ) → ( ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ↔ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) ) |
96 |
95
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) ∧ 𝐵 = ∅ ) → ( ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ↔ ( 𝑀 ∈ ( 0 ... ( 𝐿 + 0 ) ) → if ( 𝐿 ≤ 𝑀 , ( ∅ substr 〈 ( 𝑀 − 𝐿 ) , 0 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ ∅ ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + 0 ) 〉 ) ) ) ) |
97 |
79 96
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) ∧ 𝐵 = ∅ ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
98 |
10 97
|
mpdan |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐵 ) = 0 ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
99 |
98
|
ex |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐵 ) = 0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
100 |
6 99
|
syld |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
101 |
100
|
com23 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
102 |
101
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
103 |
102
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ) → ( ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
104 |
1
|
eleq1i |
⊢ ( 𝐿 ∈ ℕ0 ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
105 |
104 14
|
sylbir |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → 𝐿 ∈ ℝ ) |
106 |
11 105
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → 𝐿 ∈ ℝ ) |
107 |
2
|
nn0red |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
108 |
|
leaddle0 |
⊢ ( ( 𝐿 ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ↔ ( ♯ ‘ 𝐵 ) ≤ 0 ) ) |
109 |
106 107 108
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ↔ ( ♯ ‘ 𝐵 ) ≤ 0 ) ) |
110 |
|
pm2.24 |
⊢ ( ( ♯ ‘ 𝐵 ) ≤ 0 → ( ¬ ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
111 |
109 110
|
syl6bi |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 → ( ¬ ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
112 |
111
|
adantr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 → ( ¬ ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) ) |
113 |
112
|
imp |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ) → ( ¬ ( ♯ ‘ 𝐵 ) ≤ 0 → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) ) |
114 |
103 113
|
pm2.61d |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑀 ∈ ( 0 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ∧ ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ≤ 𝐿 ) → if ( 𝐿 ≤ 𝑀 , ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( ♯ ‘ 𝐵 ) 〉 ) , ( ( 𝐴 substr 〈 𝑀 , 𝐿 〉 ) ++ 𝐵 ) ) = ( 𝐴 substr 〈 𝑀 , ( 𝐿 + ( ♯ ‘ 𝐵 ) ) 〉 ) ) |