Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐴 ) = 0 → ( 0 ... ( ♯ ‘ 𝐴 ) ) = ( 0 ... 0 ) ) |
2 |
1
|
eleq2d |
⊢ ( ( ♯ ‘ 𝐴 ) = 0 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ↔ 𝑁 ∈ ( 0 ... 0 ) ) ) |
3 |
|
elfz1eq |
⊢ ( 𝑁 ∈ ( 0 ... 0 ) → 𝑁 = 0 ) |
4 |
|
elfz1eq |
⊢ ( 𝑀 ∈ ( 0 ... 0 ) → 𝑀 = 0 ) |
5 |
|
swrd00 |
⊢ ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 0 〉 ) = ∅ |
6 |
|
swrd00 |
⊢ ( 𝐴 substr 〈 0 , 0 〉 ) = ∅ |
7 |
5 6
|
eqtr4i |
⊢ ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 0 〉 ) = ( 𝐴 substr 〈 0 , 0 〉 ) |
8 |
|
opeq1 |
⊢ ( 𝑀 = 0 → 〈 𝑀 , 0 〉 = 〈 0 , 0 〉 ) |
9 |
8
|
oveq2d |
⊢ ( 𝑀 = 0 → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 0 〉 ) = ( ( 𝐴 ++ 𝐵 ) substr 〈 0 , 0 〉 ) ) |
10 |
8
|
oveq2d |
⊢ ( 𝑀 = 0 → ( 𝐴 substr 〈 𝑀 , 0 〉 ) = ( 𝐴 substr 〈 0 , 0 〉 ) ) |
11 |
7 9 10
|
3eqtr4a |
⊢ ( 𝑀 = 0 → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , 0 〉 ) ) |
12 |
4 11
|
syl |
⊢ ( 𝑀 ∈ ( 0 ... 0 ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , 0 〉 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 0 ... 𝑁 ) = ( 0 ... 0 ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ 𝑀 ∈ ( 0 ... 0 ) ) ) |
15 |
|
opeq2 |
⊢ ( 𝑁 = 0 → 〈 𝑀 , 𝑁 〉 = 〈 𝑀 , 0 〉 ) |
16 |
15
|
oveq2d |
⊢ ( 𝑁 = 0 → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 0 〉 ) ) |
17 |
15
|
oveq2d |
⊢ ( 𝑁 = 0 → ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 0 〉 ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑁 = 0 → ( ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ↔ ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , 0 〉 ) ) ) |
19 |
14 18
|
imbi12d |
⊢ ( 𝑁 = 0 → ( ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ↔ ( 𝑀 ∈ ( 0 ... 0 ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 0 〉 ) = ( 𝐴 substr 〈 𝑀 , 0 〉 ) ) ) ) |
20 |
12 19
|
mpbiri |
⊢ ( 𝑁 = 0 → ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
21 |
3 20
|
syl |
⊢ ( 𝑁 ∈ ( 0 ... 0 ) → ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
22 |
2 21
|
syl6bi |
⊢ ( ( ♯ ‘ 𝐴 ) = 0 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) → ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ) ) |
23 |
22
|
impcomd |
⊢ ( ( ♯ ‘ 𝐴 ) = 0 → ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) = 0 ) → ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
25 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
27 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
28 |
|
elfzelfzccat |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) ) |
29 |
28
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
30 |
29
|
ad2ant2rl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
31 |
|
swrdvalfn |
⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
32 |
26 27 30 31
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
33 |
|
3anass |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ Word 𝑉 ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ) |
34 |
33
|
simplbi2 |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ) |
36 |
35
|
imp |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) |
37 |
|
swrdvalfn |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
38 |
36 37
|
syl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) Fn ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
39 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → 𝐴 ∈ Word 𝑉 ) |
40 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → 𝐵 ∈ Word 𝑉 ) |
41 |
|
elfznn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℕ0 ) |
42 |
|
nn0addcl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑘 + 𝑀 ) ∈ ℕ0 ) |
43 |
42
|
expcom |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑘 ∈ ℕ0 → ( 𝑘 + 𝑀 ) ∈ ℕ0 ) ) |
44 |
41 43
|
syl |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑘 ∈ ℕ0 → ( 𝑘 + 𝑀 ) ∈ ℕ0 ) ) |
45 |
44
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝑘 ∈ ℕ0 → ( 𝑘 + 𝑀 ) ∈ ℕ0 ) ) |
46 |
|
elfzonn0 |
⊢ ( 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
47 |
45 46
|
impel |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝑘 + 𝑀 ) ∈ ℕ0 ) |
48 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
49 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
50 |
49
|
simplbi2 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐴 ) ≠ 0 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
51 |
48 50
|
syl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐴 ) ≠ 0 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐴 ) ≠ 0 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
53 |
52
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
55 |
|
elfzo0 |
⊢ ( 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝑘 < ( 𝑁 − 𝑀 ) ) ) |
56 |
|
elfz2nn0 |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ♯ ‘ 𝐴 ) ) ) |
57 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
58 |
57
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → 𝑘 ∈ ℝ ) |
59 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
60 |
59
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → 𝑀 ∈ ℝ ) |
61 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → 𝑁 ∈ ℝ ) |
63 |
58 60 62
|
ltaddsubd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → ( ( 𝑘 + 𝑀 ) < 𝑁 ↔ 𝑘 < ( 𝑁 − 𝑀 ) ) ) |
64 |
|
nn0readdcl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑘 + 𝑀 ) ∈ ℝ ) |
65 |
64
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → ( 𝑘 + 𝑀 ) ∈ ℝ ) |
66 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
67 |
66
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
68 |
|
ltletr |
⊢ ( ( ( 𝑘 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ ) → ( ( ( 𝑘 + 𝑀 ) < 𝑁 ∧ 𝑁 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) |
69 |
65 62 67 68
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → ( ( ( 𝑘 + 𝑀 ) < 𝑁 ∧ 𝑁 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) |
70 |
69
|
expd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → ( ( 𝑘 + 𝑀 ) < 𝑁 → ( 𝑁 ≤ ( ♯ ‘ 𝐴 ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) |
71 |
63 70
|
sylbird |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ) → ( 𝑘 < ( 𝑁 − 𝑀 ) → ( 𝑁 ≤ ( ♯ ‘ 𝐴 ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) |
72 |
71
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑘 < ( 𝑁 − 𝑀 ) → ( 𝑁 ≤ ( ♯ ‘ 𝐴 ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) ) |
73 |
72
|
com24 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( 𝑁 ≤ ( ♯ ‘ 𝐴 ) → ( 𝑘 < ( 𝑁 − 𝑀 ) → ( ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) ) |
74 |
73
|
3impia |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝑘 < ( 𝑁 − 𝑀 ) → ( ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) |
75 |
74
|
com13 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑘 < ( 𝑁 − 𝑀 ) → ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) |
76 |
75
|
impancom |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 < ( 𝑁 − 𝑀 ) ) → ( 𝑀 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) |
77 |
76
|
3adant2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝑘 < ( 𝑁 − 𝑀 ) ) → ( 𝑀 ∈ ℕ0 → ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) |
78 |
77
|
com13 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝑀 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝑘 < ( 𝑁 − 𝑀 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) |
79 |
56 78
|
sylbi |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) → ( 𝑀 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝑘 < ( 𝑁 − 𝑀 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) ) |
80 |
41 79
|
mpan9 |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝑘 < ( 𝑁 − 𝑀 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) |
81 |
80
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝑘 < ( 𝑁 − 𝑀 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) |
82 |
55 81
|
syl5bi |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) |
83 |
82
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) |
84 |
|
elfzo0 |
⊢ ( ( 𝑘 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( ( 𝑘 + 𝑀 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ( 𝑘 + 𝑀 ) < ( ♯ ‘ 𝐴 ) ) ) |
85 |
47 54 83 84
|
syl3anbrc |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝑘 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
86 |
|
ccatval1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ ( 𝑘 + 𝑀 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑘 + 𝑀 ) ) = ( 𝐴 ‘ ( 𝑘 + 𝑀 ) ) ) |
87 |
39 40 85 86
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑘 + 𝑀 ) ) = ( 𝐴 ‘ ( 𝑘 + 𝑀 ) ) ) |
88 |
25
|
ad5ant12 |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
89 |
|
simplrl |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
90 |
30
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
91 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) |
92 |
|
swrdfv |
⊢ ( ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑘 ) = ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
93 |
88 89 90 91 92
|
syl31anc |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑘 ) = ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑘 + 𝑀 ) ) ) |
94 |
|
swrdfv |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑘 ) = ( 𝐴 ‘ ( 𝑘 + 𝑀 ) ) ) |
95 |
36 94
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑘 ) = ( 𝐴 ‘ ( 𝑘 + 𝑀 ) ) ) |
96 |
87 93 95
|
3eqtr4d |
⊢ ( ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ) → ( ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑘 ) = ( ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ‘ 𝑘 ) ) |
97 |
32 38 96
|
eqfnfvd |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) |
98 |
97
|
ex |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( ♯ ‘ 𝐴 ) ≠ 0 ) → ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
99 |
24 98
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ) |