Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatind.l |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 𝐿 ) |
2 |
|
swrdccatind.w |
⊢ ( 𝜑 → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
3 |
|
swrdccatin1d.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
4 |
|
swrdccatin1d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝐿 ) ) |
5 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 0 ... ( ♯ ‘ 𝐴 ) ) = ( 0 ... 𝐿 ) ) |
6 |
5
|
eleq2d |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ↔ 𝑁 ∈ ( 0 ... 𝐿 ) ) ) |
7 |
4 6
|
syl5ibr |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) |
8 |
1 7
|
mpcom |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
9 |
3 8
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) |
10 |
|
swrdccatin1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) ) |
11 |
2 9 10
|
sylc |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐴 substr 〈 𝑀 , 𝑁 〉 ) ) |