Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatind.l |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = 𝐿 ) |
2 |
|
swrdccatind.w |
⊢ ( 𝜑 → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
3 |
|
swrdccatin2d.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐿 ... 𝑁 ) ) |
4 |
|
swrdccatin2d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) |
5 |
2
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐴 ) = 𝐿 ∧ 𝜑 ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
6 |
3 4
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐿 ... 𝑁 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐴 ) = 𝐿 ∧ 𝜑 ) → ( 𝑀 ∈ ( 𝐿 ... 𝑁 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) |
8 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) = ( 𝐿 ... 𝑁 ) ) |
9 |
8
|
eleq2d |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝑀 ∈ ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) ↔ 𝑀 ∈ ( 𝐿 ... 𝑁 ) ) ) |
10 |
|
id |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( ♯ ‘ 𝐴 ) = 𝐿 ) |
11 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) = ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) |
12 |
10 11
|
oveq12d |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) = ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) |
13 |
12
|
eleq2d |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝑁 ∈ ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) |
14 |
9 13
|
anbi12d |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( ( 𝑀 ∈ ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) ∧ 𝑁 ∈ ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ↔ ( 𝑀 ∈ ( 𝐿 ... 𝑁 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
15 |
14
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐴 ) = 𝐿 ∧ 𝜑 ) → ( ( 𝑀 ∈ ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) ∧ 𝑁 ∈ ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ↔ ( 𝑀 ∈ ( 𝐿 ... 𝑁 ) ∧ 𝑁 ∈ ( 𝐿 ... ( 𝐿 + ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
16 |
7 15
|
mpbird |
⊢ ( ( ( ♯ ‘ 𝐴 ) = 𝐿 ∧ 𝜑 ) → ( 𝑀 ∈ ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) ∧ 𝑁 ∈ ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
17 |
5 16
|
jca |
⊢ ( ( ( ♯ ‘ 𝐴 ) = 𝐿 ∧ 𝜑 ) → ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) ∧ 𝑁 ∈ ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
18 |
17
|
ex |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝜑 → ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) ∧ 𝑁 ∈ ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) ) ) |
19 |
|
eqid |
⊢ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐴 ) |
20 |
19
|
swrdccatin2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( 𝑀 ∈ ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) ∧ 𝑁 ∈ ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐵 substr 〈 ( 𝑀 − ( ♯ ‘ 𝐴 ) ) , ( 𝑁 − ( ♯ ‘ 𝐴 ) ) 〉 ) ) ) |
21 |
20
|
imp |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ( ( ♯ ‘ 𝐴 ) ... 𝑁 ) ∧ 𝑁 ∈ ( ( ♯ ‘ 𝐴 ) ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐵 substr 〈 ( 𝑀 − ( ♯ ‘ 𝐴 ) ) , ( 𝑁 − ( ♯ ‘ 𝐴 ) ) 〉 ) ) |
22 |
18 21
|
syl6 |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝜑 → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐵 substr 〈 ( 𝑀 − ( ♯ ‘ 𝐴 ) ) , ( 𝑁 − ( ♯ ‘ 𝐴 ) ) 〉 ) ) ) |
23 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝑀 − ( ♯ ‘ 𝐴 ) ) = ( 𝑀 − 𝐿 ) ) |
24 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝑁 − ( ♯ ‘ 𝐴 ) ) = ( 𝑁 − 𝐿 ) ) |
25 |
23 24
|
opeq12d |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → 〈 ( 𝑀 − ( ♯ ‘ 𝐴 ) ) , ( 𝑁 − ( ♯ ‘ 𝐴 ) ) 〉 = 〈 ( 𝑀 − 𝐿 ) , ( 𝑁 − 𝐿 ) 〉 ) |
26 |
25
|
oveq2d |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝐵 substr 〈 ( 𝑀 − ( ♯ ‘ 𝐴 ) ) , ( 𝑁 − ( ♯ ‘ 𝐴 ) ) 〉 ) = ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( 𝑁 − 𝐿 ) 〉 ) ) |
27 |
26
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐵 substr 〈 ( 𝑀 − ( ♯ ‘ 𝐴 ) ) , ( 𝑁 − ( ♯ ‘ 𝐴 ) ) 〉 ) ↔ ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( 𝑁 − 𝐿 ) 〉 ) ) ) |
28 |
22 27
|
sylibd |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝐿 → ( 𝜑 → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( 𝑁 − 𝐿 ) 〉 ) ) ) |
29 |
1 28
|
mpcom |
⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐵 ) substr 〈 𝑀 , 𝑁 〉 ) = ( 𝐵 substr 〈 ( 𝑀 − 𝐿 ) , ( 𝑁 − 𝐿 ) 〉 ) ) |