Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ∈ Word 𝐴 ↔ ∅ ∈ Word 𝐴 ) ) |
2 |
|
n0 |
⊢ ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ) |
3 |
|
df-substr |
⊢ substr = ( 𝑠 ∈ V , 𝑏 ∈ ( ℤ × ℤ ) ↦ if ( ( ( 1st ‘ 𝑏 ) ..^ ( 2nd ‘ 𝑏 ) ) ⊆ dom 𝑠 , ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) , ∅ ) ) |
4 |
3
|
elmpocl2 |
⊢ ( 𝑥 ∈ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) → 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) ) |
5 |
|
opelxp |
⊢ ( 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) ↔ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
6 |
4 5
|
sylib |
⊢ ( 𝑥 ∈ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
7 |
6
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
8 |
2 7
|
sylbi |
⊢ ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ≠ ∅ → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
9 |
|
swrdval |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = if ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 , ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) , ∅ ) ) |
10 |
|
wrdf |
⊢ ( 𝑆 ∈ Word 𝐴 → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ 𝐴 ) |
13 |
|
simplr |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) |
15 |
|
simpll3 |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → 𝐿 ∈ ℤ ) |
16 |
|
simpll2 |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → 𝐹 ∈ ℤ ) |
17 |
|
fzoaddel2 |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ∧ 𝐿 ∈ ℤ ∧ 𝐹 ∈ ℤ ) → ( 𝑥 + 𝐹 ) ∈ ( 𝐹 ..^ 𝐿 ) ) |
18 |
14 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( 𝑥 + 𝐹 ) ∈ ( 𝐹 ..^ 𝐿 ) ) |
19 |
13 18
|
sseldd |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( 𝑥 + 𝐹 ) ∈ dom 𝑆 ) |
20 |
12
|
fdmd |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → dom 𝑆 = ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
21 |
19 20
|
eleqtrd |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( 𝑥 + 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
22 |
12 21
|
ffvelrnd |
⊢ ( ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ∈ 𝐴 ) |
23 |
22
|
fmpttd |
⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) → ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) : ( 0 ..^ ( 𝐿 − 𝐹 ) ) ⟶ 𝐴 ) |
24 |
|
iswrdi |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) : ( 0 ..^ ( 𝐿 − 𝐹 ) ) ⟶ 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ∈ Word 𝐴 ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) → ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ∈ Word 𝐴 ) |
26 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐴 |
27 |
26
|
a1i |
⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 ) → ∅ ∈ Word 𝐴 ) |
28 |
25 27
|
ifclda |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → if ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑆 , ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) , ∅ ) ∈ Word 𝐴 ) |
29 |
9 28
|
eqeltrd |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ∈ Word 𝐴 ) |
30 |
29
|
3expb |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ∈ Word 𝐴 ) |
31 |
8 30
|
sylan2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ≠ ∅ ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ∈ Word 𝐴 ) |
32 |
26
|
a1i |
⊢ ( 𝑆 ∈ Word 𝐴 → ∅ ∈ Word 𝐴 ) |
33 |
1 31 32
|
pm2.61ne |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ∈ Word 𝐴 ) |