Step |
Hyp |
Ref |
Expression |
1 |
|
swrdval2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ) |
2 |
1
|
fveq1d |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ‘ 𝑋 ) ) |
3 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) = ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) |
5 |
|
fvex |
⊢ ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝑋 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) → ( ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ‘ 𝑋 ) = ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ) |
7 |
2 6
|
sylan9eq |
⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑋 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 𝑋 ) = ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ) |