Step |
Hyp |
Ref |
Expression |
1 |
|
elfzofz |
⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → 𝐹 ∈ ( 0 ... 𝐿 ) ) |
2 |
1
|
3anim2i |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) |
3 |
|
fzonnsub |
⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → ( 𝐿 − 𝐹 ) ∈ ℕ ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝐿 − 𝐹 ) ∈ ℕ ) |
5 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↔ ( 𝐿 − 𝐹 ) ∈ ℕ ) |
6 |
4 5
|
sylibr |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 0 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) |
7 |
|
swrdfv |
⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 0 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 0 ) = ( 𝑆 ‘ ( 0 + 𝐹 ) ) ) |
8 |
2 6 7
|
syl2anc |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 0 ) = ( 𝑆 ‘ ( 0 + 𝐹 ) ) ) |
9 |
|
elfzoelz |
⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → 𝐹 ∈ ℤ ) |
10 |
9
|
zcnd |
⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → 𝐹 ∈ ℂ ) |
11 |
10
|
addid2d |
⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → ( 0 + 𝐹 ) = 𝐹 ) |
12 |
11
|
fveq2d |
⊢ ( 𝐹 ∈ ( 0 ..^ 𝐿 ) → ( 𝑆 ‘ ( 0 + 𝐹 ) ) = ( 𝑆 ‘ 𝐹 ) ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ ( 0 + 𝐹 ) ) = ( 𝑆 ‘ 𝐹 ) ) |
14 |
8 13
|
eqtrd |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ..^ 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 0 ) = ( 𝑆 ‘ 𝐹 ) ) |