| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝑆  ∈  Word  𝑉 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐹  ∈  ℕ0 ) | 
						
							| 3 |  | eluznn0 | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 4 |  | eluzle | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 𝐹 )  →  𝐹  ≤  𝐿 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐹  ≤  𝐿 ) | 
						
							| 6 | 2 3 5 | 3jca | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 ) ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 ) ) | 
						
							| 8 |  | elfz2nn0 | ⊢ ( 𝐹  ∈  ( 0 ... 𝐿 )  ↔  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝐹  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 10 | 3 | anim1i | ⊢ ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝐿  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 11 | 10 | 3adant1 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝐿  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 12 |  | lencl | ⊢ ( 𝑆  ∈  Word  𝑉  →  ( ♯ ‘ 𝑆 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑆 )  ∈  ℕ0 ) | 
						
							| 14 |  | fznn0 | ⊢ ( ( ♯ ‘ 𝑆 )  ∈  ℕ0  →  ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  ↔  ( 𝐿  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  ↔  ( 𝐿  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 16 | 11 15 | mpbird | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 17 | 1 9 16 | 3jca | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ( 0 ... 𝐿 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ∧  𝑋  ∈  ( 𝐹 ..^ 𝐿 ) )  →  ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ( 0 ... 𝐿 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 19 |  | nn0cn | ⊢ ( 𝐹  ∈  ℕ0  →  𝐹  ∈  ℂ ) | 
						
							| 20 |  | eluzelcn | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 𝐹 )  →  𝐿  ∈  ℂ ) | 
						
							| 21 |  | pncan3 | ⊢ ( ( 𝐹  ∈  ℂ  ∧  𝐿  ∈  ℂ )  →  ( 𝐹  +  ( 𝐿  −  𝐹 ) )  =  𝐿 ) | 
						
							| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  ( 𝐹  +  ( 𝐿  −  𝐹 ) )  =  𝐿 ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐿  =  ( 𝐹  +  ( 𝐿  −  𝐹 ) ) ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝐿  =  ( 𝐹  +  ( 𝐿  −  𝐹 ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝐹 ..^ 𝐿 )  =  ( 𝐹 ..^ ( 𝐹  +  ( 𝐿  −  𝐹 ) ) ) ) | 
						
							| 26 | 25 | eleq2d | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝑋  ∈  ( 𝐹 ..^ 𝐿 )  ↔  𝑋  ∈  ( 𝐹 ..^ ( 𝐹  +  ( 𝐿  −  𝐹 ) ) ) ) ) | 
						
							| 27 | 26 | biimpa | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ∧  𝑋  ∈  ( 𝐹 ..^ 𝐿 ) )  →  𝑋  ∈  ( 𝐹 ..^ ( 𝐹  +  ( 𝐿  −  𝐹 ) ) ) ) | 
						
							| 28 |  | eluzelz | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 𝐹 )  →  𝐿  ∈  ℤ ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐿  ∈  ℤ ) | 
						
							| 30 |  | nn0z | ⊢ ( 𝐹  ∈  ℕ0  →  𝐹  ∈  ℤ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐹  ∈  ℤ ) | 
						
							| 32 | 29 31 | zsubcld | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  ( 𝐿  −  𝐹 )  ∈  ℤ ) | 
						
							| 33 | 32 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝐿  −  𝐹 )  ∈  ℤ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ∧  𝑋  ∈  ( 𝐹 ..^ 𝐿 ) )  →  ( 𝐿  −  𝐹 )  ∈  ℤ ) | 
						
							| 35 |  | fzosubel3 | ⊢ ( ( 𝑋  ∈  ( 𝐹 ..^ ( 𝐹  +  ( 𝐿  −  𝐹 ) ) )  ∧  ( 𝐿  −  𝐹 )  ∈  ℤ )  →  ( 𝑋  −  𝐹 )  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) ) ) | 
						
							| 36 | 27 34 35 | syl2anc | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ∧  𝑋  ∈  ( 𝐹 ..^ 𝐿 ) )  →  ( 𝑋  −  𝐹 )  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) ) ) | 
						
							| 37 |  | swrdfv | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ( 0 ... 𝐿 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) )  ∧  ( 𝑋  −  𝐹 )  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) ) )  →  ( ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 ) ‘ ( 𝑋  −  𝐹 ) )  =  ( 𝑆 ‘ ( ( 𝑋  −  𝐹 )  +  𝐹 ) ) ) | 
						
							| 38 | 18 36 37 | syl2anc | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ∧  𝑋  ∈  ( 𝐹 ..^ 𝐿 ) )  →  ( ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 ) ‘ ( 𝑋  −  𝐹 ) )  =  ( 𝑆 ‘ ( ( 𝑋  −  𝐹 )  +  𝐹 ) ) ) | 
						
							| 39 |  | elfzoelz | ⊢ ( 𝑋  ∈  ( 𝐹 ..^ 𝐿 )  →  𝑋  ∈  ℤ ) | 
						
							| 40 | 39 | zcnd | ⊢ ( 𝑋  ∈  ( 𝐹 ..^ 𝐿 )  →  𝑋  ∈  ℂ ) | 
						
							| 41 | 19 | adantr | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐹  ∈  ℂ ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝐹  ∈  ℂ ) | 
						
							| 43 |  | npcan | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝐹  ∈  ℂ )  →  ( ( 𝑋  −  𝐹 )  +  𝐹 )  =  𝑋 ) | 
						
							| 44 | 40 42 43 | syl2anr | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ∧  𝑋  ∈  ( 𝐹 ..^ 𝐿 ) )  →  ( ( 𝑋  −  𝐹 )  +  𝐹 )  =  𝑋 ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ∧  𝑋  ∈  ( 𝐹 ..^ 𝐿 ) )  →  ( 𝑆 ‘ ( ( 𝑋  −  𝐹 )  +  𝐹 ) )  =  ( 𝑆 ‘ 𝑋 ) ) | 
						
							| 46 | 38 45 | eqtrd | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ∧  𝑋  ∈  ( 𝐹 ..^ 𝐿 ) )  →  ( ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 ) ‘ ( 𝑋  −  𝐹 ) )  =  ( 𝑆 ‘ 𝑋 ) ) |