Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ∈ V |
2 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) |
3 |
1 2
|
fnmpti |
⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) Fn ( 0 ..^ ( 𝐿 − 𝐹 ) ) |
4 |
|
swrdval2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ) |
5 |
4
|
fneq1d |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) Fn ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↔ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) Fn ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) ) |
6 |
3 5
|
mpbiri |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) Fn ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) |
7 |
|
hashfn |
⊢ ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) Fn ( 0 ..^ ( 𝐿 − 𝐹 ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ) = ( ♯ ‘ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ) = ( ♯ ‘ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) ) |
9 |
|
fznn0sub |
⊢ ( 𝐹 ∈ ( 0 ... 𝐿 ) → ( 𝐿 − 𝐹 ) ∈ ℕ0 ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝐿 − 𝐹 ) ∈ ℕ0 ) |
11 |
|
hashfzo0 |
⊢ ( ( 𝐿 − 𝐹 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) = ( 𝐿 − 𝐹 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) = ( 𝐿 − 𝐹 ) ) |
13 |
8 12
|
eqtrd |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ) = ( 𝐿 − 𝐹 ) ) |