| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝑆  ∈  Word  𝑉 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐹  ∈  ℕ0 ) | 
						
							| 3 |  | eluznn0 | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 4 |  | eluzle | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 𝐹 )  →  𝐹  ≤  𝐿 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  𝐹  ≤  𝐿 ) | 
						
							| 6 | 2 3 5 | 3jca | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 ) ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 ) ) | 
						
							| 8 |  | elfz2nn0 | ⊢ ( 𝐹  ∈  ( 0 ... 𝐿 )  ↔  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝐹  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 10 | 3 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 11 |  | lencl | ⊢ ( 𝑆  ∈  Word  𝑉  →  ( ♯ ‘ 𝑆 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑆 )  ∈  ℕ0 ) | 
						
							| 13 |  | simp3 | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) | 
						
							| 14 | 10 12 13 | 3jca | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 15 |  | elfz2nn0 | ⊢ ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  ↔  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 17 |  | swrdlen | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ( 0 ... 𝐿 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) )  →  ( ♯ ‘ ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 ) )  =  ( 𝐿  −  𝐹 ) ) | 
						
							| 18 | 1 9 16 17 | syl3anc | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ( ℤ≥ ‘ 𝐹 ) )  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 ) )  =  ( 𝐿  −  𝐹 ) ) |