| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdval | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝑊  substr  〈 𝐹 ,  𝐿 〉 )  =  if ( ( 𝐹 ..^ 𝐿 )  ⊆  dom  𝑊 ,  ( 𝑖  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) )  ↦  ( 𝑊 ‘ ( 𝑖  +  𝐹 ) ) ) ,  ∅ ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 𝑊  substr  〈 𝐹 ,  𝐿 〉 )  =  if ( ( 𝐹 ..^ 𝐿 )  ⊆  dom  𝑊 ,  ( 𝑖  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) )  ↦  ( 𝑊 ‘ ( 𝑖  +  𝐹 ) ) ) ,  ∅ ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  𝐿  ≤  𝐹 ) | 
						
							| 4 |  | 3simpc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 6 |  | fzon | ⊢ ( ( 𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝐿  ≤  𝐹  ↔  ( 𝐹 ..^ 𝐿 )  =  ∅ ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 𝐿  ≤  𝐹  ↔  ( 𝐹 ..^ 𝐿 )  =  ∅ ) ) | 
						
							| 8 | 3 7 | mpbid | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 𝐹 ..^ 𝐿 )  =  ∅ ) | 
						
							| 9 |  | 0ss | ⊢ ∅  ⊆  dom  𝑊 | 
						
							| 10 | 8 9 | eqsstrdi | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 𝐹 ..^ 𝐿 )  ⊆  dom  𝑊 ) | 
						
							| 11 | 10 | iftrued | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  if ( ( 𝐹 ..^ 𝐿 )  ⊆  dom  𝑊 ,  ( 𝑖  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) )  ↦  ( 𝑊 ‘ ( 𝑖  +  𝐹 ) ) ) ,  ∅ )  =  ( 𝑖  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) )  ↦  ( 𝑊 ‘ ( 𝑖  +  𝐹 ) ) ) ) | 
						
							| 12 |  | fzo0n | ⊢ ( ( 𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝐿  ≤  𝐹  ↔  ( 0 ..^ ( 𝐿  −  𝐹 ) )  =  ∅ ) ) | 
						
							| 13 | 12 | biimpa | ⊢ ( ( ( 𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 0 ..^ ( 𝐿  −  𝐹 ) )  =  ∅ ) | 
						
							| 14 | 13 | 3adantl1 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 0 ..^ ( 𝐿  −  𝐹 ) )  =  ∅ ) | 
						
							| 15 | 14 | mpteq1d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 𝑖  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) )  ↦  ( 𝑊 ‘ ( 𝑖  +  𝐹 ) ) )  =  ( 𝑖  ∈  ∅  ↦  ( 𝑊 ‘ ( 𝑖  +  𝐹 ) ) ) ) | 
						
							| 16 |  | mpt0 | ⊢ ( 𝑖  ∈  ∅  ↦  ( 𝑊 ‘ ( 𝑖  +  𝐹 ) ) )  =  ∅ | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 𝑖  ∈  ( 0 ..^ ( 𝐿  −  𝐹 ) )  ↦  ( 𝑊 ‘ ( 𝑖  +  𝐹 ) ) )  =  ∅ ) | 
						
							| 18 | 2 11 17 | 3eqtrd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ∧  𝐿  ≤  𝐹 )  →  ( 𝑊  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( 𝐿  ≤  𝐹  →  ( 𝑊  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) |