Step |
Hyp |
Ref |
Expression |
1 |
|
hashneq0 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 𝑊 ≠ ∅ ) ) |
2 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
3 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
4 |
|
elnnz |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑊 ) ) ) |
5 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
6 |
4 5
|
sylbir |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
7 |
6
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 < ( ♯ ‘ 𝑊 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
8 |
2 3 7
|
3syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑊 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
9 |
1 8
|
sylbird |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
10 |
9
|
imp |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
11 |
|
swrds1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ”〉 ) |
12 |
10 11
|
syldan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) 〉 ) = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ”〉 ) |
13 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
14 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
15 |
13 14
|
jctir |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ) ) |
16 |
|
npcan |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑊 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ) |
18 |
2 15 17
|
3syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) ) |
20 |
19
|
opeq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) 〉 ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 1 ) 〉 ) ) |
22 |
|
lsw |
⊢ ( 𝑊 ∈ Word 𝑉 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
24 |
23
|
s1eqd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ”〉 ) |
25 |
12 21 24
|
3eqtr4d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( lastS ‘ 𝑊 ) ”〉 ) |