Step |
Hyp |
Ref |
Expression |
1 |
|
3orcomb |
⊢ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ↔ ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ∨ 𝐿 ≤ 𝐹 ) ) |
2 |
|
df-3or |
⊢ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ∨ 𝐿 ≤ 𝐹 ) ↔ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∨ 𝐿 ≤ 𝐹 ) ) |
3 |
1 2
|
bitri |
⊢ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ↔ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∨ 𝐿 ≤ 𝐹 ) ) |
4 |
|
swrdlend |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐿 ≤ 𝐹 → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
5 |
4
|
com12 |
⊢ ( 𝐿 ≤ 𝐹 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
6 |
|
swrdval |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = if ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 , ( 𝑖 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑊 ‘ ( 𝑖 + 𝐹 ) ) ) , ∅ ) ) |
7 |
6
|
adantl |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = if ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 , ( 𝑖 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑊 ‘ ( 𝑖 + 𝐹 ) ) ) , ∅ ) ) |
8 |
|
zre |
⊢ ( 𝐹 ∈ ℤ → 𝐹 ∈ ℝ ) |
9 |
|
0red |
⊢ ( 𝐹 ∈ ℤ → 0 ∈ ℝ ) |
10 |
8 9
|
ltnled |
⊢ ( 𝐹 ∈ ℤ → ( 𝐹 < 0 ↔ ¬ 0 ≤ 𝐹 ) ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ↔ ¬ 0 ≤ 𝐹 ) ) |
12 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
13 |
12
|
nn0red |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
14 |
|
zre |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) |
15 |
13 14
|
anim12i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
16 |
15
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
17 |
|
ltnle |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
19 |
11 18
|
orbi12d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ↔ ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
20 |
19
|
biimpcd |
⊢ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
22 |
21
|
imp |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
23 |
|
ianor |
⊢ ( ¬ ( 0 ≤ 𝐹 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ¬ ( 0 ≤ 𝐹 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
25 |
|
3simpc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
26 |
12
|
nn0zd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
27 |
|
0z |
⊢ 0 ∈ ℤ |
28 |
26 27
|
jctil |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) ) |
30 |
|
ltnle |
⊢ ( ( 𝐹 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹 ) ) |
31 |
8 14 30
|
syl2an |
⊢ ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹 ) ) |
32 |
31
|
3adant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹 ) ) |
33 |
32
|
biimprcd |
⊢ ( ¬ 𝐿 ≤ 𝐹 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝐹 < 𝐿 ) ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝐹 < 𝐿 ) ) |
35 |
34
|
imp |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → 𝐹 < 𝐿 ) |
36 |
|
ssfzo12bi |
⊢ ( ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) ∧ 𝐹 < 𝐿 ) → ( ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 0 ≤ 𝐹 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
37 |
25 29 35 36
|
syl2an23an |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 0 ≤ 𝐹 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
38 |
24 37
|
mtbird |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ¬ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
39 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
40 |
39
|
sseq2d |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ↔ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
41 |
40
|
notbid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ↔ ¬ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
42 |
41
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ↔ ¬ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
43 |
42
|
adantl |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ↔ ¬ ( 𝐹 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
44 |
38 43
|
mpbird |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ¬ ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 ) |
45 |
44
|
iffalsed |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → if ( ( 𝐹 ..^ 𝐿 ) ⊆ dom 𝑊 , ( 𝑖 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑊 ‘ ( 𝑖 + 𝐹 ) ) ) , ∅ ) = ∅ ) |
46 |
7 45
|
eqtrd |
⊢ ( ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∧ ¬ 𝐿 ≤ 𝐹 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
47 |
46
|
exp31 |
⊢ ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( ¬ 𝐿 ≤ 𝐹 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
48 |
47
|
impcom |
⊢ ( ( ¬ 𝐿 ≤ 𝐹 ∧ ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
49 |
5 48
|
jaoi3 |
⊢ ( ( 𝐿 ≤ 𝐹 ∨ ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
50 |
49
|
orcoms |
⊢ ( ( ( 𝐹 < 0 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) ∨ 𝐿 ≤ 𝐹 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
51 |
3 50
|
sylbi |
⊢ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
52 |
51
|
com12 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |