| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ianor | ⊢ ( ¬  ( 𝐹  ∈  ( 0 ... 𝐿 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) )  ↔  ( ¬  𝐹  ∈  ( 0 ... 𝐿 )  ∨  ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 2 |  | 3ianor | ⊢ ( ¬  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ↔  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 ) ) | 
						
							| 3 |  | elfz2nn0 | ⊢ ( 𝐹  ∈  ( 0 ... 𝐿 )  ↔  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 ) ) | 
						
							| 4 | 2 3 | xchnxbir | ⊢ ( ¬  𝐹  ∈  ( 0 ... 𝐿 )  ↔  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 ) ) | 
						
							| 5 |  | 3ianor | ⊢ ( ¬  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  ↔  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 6 |  | elfz2nn0 | ⊢ ( 𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  ↔  ( 𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∧  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 7 | 5 6 | xchnxbir | ⊢ ( ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  ↔  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 8 | 4 7 | orbi12i | ⊢ ( ( ¬  𝐹  ∈  ( 0 ... 𝐿 )  ∨  ¬  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) )  ↔  ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 )  ∨  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 9 | 1 8 | bitri | ⊢ ( ¬  ( 𝐹  ∈  ( 0 ... 𝐿 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) )  ↔  ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 )  ∨  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) ) | 
						
							| 10 |  | df-3or | ⊢ ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 )  ↔  ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0 )  ∨  ¬  𝐹  ≤  𝐿 ) ) | 
						
							| 11 |  | ianor | ⊢ ( ¬  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  ↔  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0 ) ) | 
						
							| 12 |  | swrdnnn0nd | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ¬  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) | 
						
							| 13 | 12 | expcom | ⊢ ( ¬  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 14 | 11 13 | sylbir | ⊢ ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 15 |  | anor | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  ↔  ¬  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0 ) ) | 
						
							| 16 |  | nn0re | ⊢ ( 𝐿  ∈  ℕ0  →  𝐿  ∈  ℝ ) | 
						
							| 17 |  | nn0re | ⊢ ( 𝐹  ∈  ℕ0  →  𝐹  ∈  ℝ ) | 
						
							| 18 |  | ltnle | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝐹  ∈  ℝ )  →  ( 𝐿  <  𝐹  ↔  ¬  𝐹  ≤  𝐿 ) ) | 
						
							| 19 | 16 17 18 | syl2anr | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  →  ( 𝐿  <  𝐹  ↔  ¬  𝐹  ≤  𝐿 ) ) | 
						
							| 20 |  | nn0z | ⊢ ( 𝐹  ∈  ℕ0  →  𝐹  ∈  ℤ ) | 
						
							| 21 |  | nn0z | ⊢ ( 𝐿  ∈  ℕ0  →  𝐿  ∈  ℤ ) | 
						
							| 22 | 20 21 | anim12i | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  →  ( 𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 23 | 22 | anim2i | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) ) | 
						
							| 24 |  | 3anass | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  ↔  ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝐿  <  𝐹 )  →  ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 27 | 17 16 | anim12ci | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  →  ( 𝐿  ∈  ℝ  ∧  𝐹  ∈  ℝ ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐿  ∈  ℝ  ∧  𝐹  ∈  ℝ ) ) | 
						
							| 29 |  | ltle | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝐹  ∈  ℝ )  →  ( 𝐿  <  𝐹  →  𝐿  ≤  𝐹 ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐿  <  𝐹  →  𝐿  ≤  𝐹 ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝐿  <  𝐹 )  →  𝐿  ≤  𝐹 ) | 
						
							| 32 | 31 | 3mix2d | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝐿  <  𝐹 )  →  ( 𝐹  <  0  ∨  𝐿  ≤  𝐹  ∨  ( ♯ ‘ 𝑆 )  <  𝐿 ) ) | 
						
							| 33 |  | swrdnd | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( ( 𝐹  <  0  ∨  𝐿  ≤  𝐹  ∨  ( ♯ ‘ 𝑆 )  <  𝐿 )  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 34 | 26 32 33 | sylc | ⊢ ( ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝐿  <  𝐹 )  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) | 
						
							| 35 | 34 | ex | ⊢ ( ( 𝑆  ∈  Word  𝑉  ∧  ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐿  <  𝐹  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 36 | 35 | expcom | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝐿  <  𝐹  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 37 | 36 | com23 | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  →  ( 𝐿  <  𝐹  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 38 | 19 37 | sylbird | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  →  ( ¬  𝐹  ≤  𝐿  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 39 | 15 38 | sylbir | ⊢ ( ¬  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0 )  →  ( ¬  𝐹  ≤  𝐿  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ¬  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0 )  ∧  ¬  𝐹  ≤  𝐿 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 41 | 14 40 | jaoi3 | ⊢ ( ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0 )  ∨  ¬  𝐹  ≤  𝐿 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 42 | 10 41 | sylbi | ⊢ ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 43 |  | 3anor | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ↔  ¬  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 ) ) | 
						
							| 44 |  | pm2.24 | ⊢ ( 𝐿  ∈  ℕ0  →  ( ¬  𝐿  ∈  ℕ0  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  →  ( ¬  𝐿  ∈  ℕ0  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 46 | 45 | com12 | ⊢ ( ¬  𝐿  ∈  ℕ0  →  ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 47 |  | pm2.24 | ⊢ ( ( ♯ ‘ 𝑆 )  ∈  ℕ0  →  ( ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 48 |  | lencl | ⊢ ( 𝑆  ∈  Word  𝑉  →  ( ♯ ‘ 𝑆 )  ∈  ℕ0 ) | 
						
							| 49 | 47 48 | syl11 | ⊢ ( ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 50 | 49 | a1d | ⊢ ( ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  →  ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 51 | 48 | nn0red | ⊢ ( 𝑆  ∈  Word  𝑉  →  ( ♯ ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 52 | 16 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  →  𝐿  ∈  ℝ ) | 
						
							| 53 |  | ltnle | ⊢ ( ( ( ♯ ‘ 𝑆 )  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( ( ♯ ‘ 𝑆 )  <  𝐿  ↔  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 54 | 51 52 53 | syl2anr | ⊢ ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ∧  𝑆  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝑆 )  <  𝐿  ↔  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 55 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ∧  𝑆  ∈  Word  𝑉 )  →  𝑆  ∈  Word  𝑉 ) | 
						
							| 56 | 20 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  →  𝐹  ∈  ℤ ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ∧  𝑆  ∈  Word  𝑉 )  →  𝐹  ∈  ℤ ) | 
						
							| 58 | 21 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  →  𝐿  ∈  ℤ ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ∧  𝑆  ∈  Word  𝑉 )  →  𝐿  ∈  ℤ ) | 
						
							| 60 | 55 57 59 | 3jca | ⊢ ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ∧  𝑆  ∈  Word  𝑉 )  →  ( 𝑆  ∈  Word  𝑉  ∧  𝐹  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 61 |  | 3mix3 | ⊢ ( ( ♯ ‘ 𝑆 )  <  𝐿  →  ( 𝐹  <  0  ∨  𝐿  ≤  𝐹  ∨  ( ♯ ‘ 𝑆 )  <  𝐿 ) ) | 
						
							| 62 | 60 61 33 | syl2im | ⊢ ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ∧  𝑆  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝑆 )  <  𝐿  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 63 | 54 62 | sylbird | ⊢ ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ∧  𝑆  ∈  Word  𝑉 )  →  ( ¬  𝐿  ≤  ( ♯ ‘ 𝑆 )  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 64 | 63 | com12 | ⊢ ( ¬  𝐿  ≤  ( ♯ ‘ 𝑆 )  →  ( ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  ∧  𝑆  ∈  Word  𝑉 )  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 65 | 64 | expd | ⊢ ( ¬  𝐿  ≤  ( ♯ ‘ 𝑆 )  →  ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 66 | 46 50 65 | 3jaoi | ⊢ ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( ( 𝐹  ∈  ℕ0  ∧  𝐿  ∈  ℕ0  ∧  𝐹  ≤  𝐿 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 67 | 43 66 | biimtrrid | ⊢ ( ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) )  →  ( ¬  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) ) | 
						
							| 68 | 67 | impcom | ⊢ ( ( ¬  ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 )  ∧  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 69 | 42 68 | jaoi3 | ⊢ ( ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 )  ∨  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) )  →  ( 𝑆  ∈  Word  𝑉  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 70 | 69 | com12 | ⊢ ( 𝑆  ∈  Word  𝑉  →  ( ( ( ¬  𝐹  ∈  ℕ0  ∨  ¬  𝐿  ∈  ℕ0  ∨  ¬  𝐹  ≤  𝐿 )  ∨  ( ¬  𝐿  ∈  ℕ0  ∨  ¬  ( ♯ ‘ 𝑆 )  ∈  ℕ0  ∨  ¬  𝐿  ≤  ( ♯ ‘ 𝑆 ) ) )  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 71 | 9 70 | biimtrid | ⊢ ( 𝑆  ∈  Word  𝑉  →  ( ¬  ( 𝐹  ∈  ( 0 ... 𝐿 )  ∧  𝐿  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) )  →  ( 𝑆  substr  〈 𝐹 ,  𝐿 〉 )  =  ∅ ) ) |