| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3orass | ⊢ ( ( 𝐵  ≤  𝐴  ∨  ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  ↔  ( 𝐵  ≤  𝐴  ∨  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) ) ) | 
						
							| 2 |  | pm2.24 | ⊢ ( 𝐵  ≤  𝐴  →  ( ¬  𝐵  ≤  𝐴  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) ) | 
						
							| 3 |  | swrdval | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  if ( ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊 ,  ( 𝑥  ∈  ( 0 ..^ ( 𝐵  −  𝐴 ) )  ↦  ( 𝑊 ‘ ( 𝑥  +  𝐴 ) ) ) ,  ∅ ) ) | 
						
							| 4 | 3 | ad2antrr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  ∧  ¬  𝐵  ≤  𝐴 )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  if ( ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊 ,  ( 𝑥  ∈  ( 0 ..^ ( 𝐵  −  𝐴 ) )  ↦  ( 𝑊 ‘ ( 𝑥  +  𝐴 ) ) ) ,  ∅ ) ) | 
						
							| 5 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝑉  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 6 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 7 |  | 3anass | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ↔  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ ) ) ) | 
						
							| 8 |  | ssfzoulel | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  →  ( ( 𝐴 ..^ 𝐵 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐵  ≤  𝐴 ) ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  →  ( ( 𝐴 ..^ 𝐵 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐵  ≤  𝐴 ) ) | 
						
							| 10 | 7 9 | sylanbr | ⊢ ( ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ ) )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  →  ( ( 𝐴 ..^ 𝐵 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝐵  ≤  𝐴 ) ) | 
						
							| 11 | 10 | con3dimp | ⊢ ( ( ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ ) )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  ∧  ¬  𝐵  ≤  𝐴 )  →  ¬  ( 𝐴 ..^ 𝐵 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 12 |  | sseq2 | ⊢ ( dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊  ↔  ( 𝐴 ..^ 𝐵 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 13 | 12 | notbid | ⊢ ( dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ¬  ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊  ↔  ¬  ( 𝐴 ..^ 𝐵 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 14 | 11 13 | imbitrrid | ⊢ ( dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ ) )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  ∧  ¬  𝐵  ≤  𝐴 )  →  ¬  ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊 ) ) | 
						
							| 15 | 14 | exp5j | ⊢ ( dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  →  ( ¬  𝐵  ≤  𝐴  →  ¬  ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊 ) ) ) ) ) | 
						
							| 16 | 5 6 15 | sylc | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  →  ( ¬  𝐵  ≤  𝐴  →  ¬  ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊 ) ) ) ) | 
						
							| 17 | 16 | 3impib | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  →  ( ¬  𝐵  ≤  𝐴  →  ¬  ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊 ) ) ) | 
						
							| 18 | 17 | imp31 | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  ∧  ¬  𝐵  ≤  𝐴 )  →  ¬  ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊 ) | 
						
							| 19 | 18 | iffalsed | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  ∧  ¬  𝐵  ≤  𝐴 )  →  if ( ( 𝐴 ..^ 𝐵 )  ⊆  dom  𝑊 ,  ( 𝑥  ∈  ( 0 ..^ ( 𝐵  −  𝐴 ) )  ↦  ( 𝑊 ‘ ( 𝑥  +  𝐴 ) ) ) ,  ∅ )  =  ∅ ) | 
						
							| 20 | 4 19 | eqtrd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  ∧  ¬  𝐵  ≤  𝐴 )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) | 
						
							| 21 | 20 | ex | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  →  ( ¬  𝐵  ≤  𝐴  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) | 
						
							| 22 | 21 | expcom | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ¬  𝐵  ≤  𝐴  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) ) | 
						
							| 23 | 22 | com23 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  →  ( ¬  𝐵  ≤  𝐴  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) ) | 
						
							| 24 | 2 23 | jaoi | ⊢ ( ( 𝐵  ≤  𝐴  ∨  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  →  ( ¬  𝐵  ≤  𝐴  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) ) | 
						
							| 25 |  | swrdlend | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐵  ≤  𝐴  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) | 
						
							| 26 | 25 | com12 | ⊢ ( 𝐵  ≤  𝐴  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) | 
						
							| 27 | 24 26 | pm2.61d2 | ⊢ ( ( 𝐵  ≤  𝐴  ∨  ( ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 ) )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) | 
						
							| 28 | 1 27 | sylbi | ⊢ ( ( 𝐵  ≤  𝐴  ∨  ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) | 
						
							| 29 | 28 | com12 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐵  ≤  𝐴  ∨  ( ♯ ‘ 𝑊 )  ≤  𝐴  ∨  𝐵  ≤  0 )  →  ( 𝑊  substr  〈 𝐴 ,  𝐵 〉 )  =  ∅ ) ) |