Step |
Hyp |
Ref |
Expression |
1 |
|
opelxp |
⊢ ( 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) ↔ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
2 |
1
|
biimpi |
⊢ ( 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑆 ∈ V ∧ 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
4 |
|
df-substr |
⊢ substr = ( 𝑠 ∈ V , 𝑏 ∈ ( ℤ × ℤ ) ↦ if ( ( ( 1st ‘ 𝑏 ) ..^ ( 2nd ‘ 𝑏 ) ) ⊆ dom 𝑠 , ( 𝑥 ∈ ( 0 ..^ ( ( 2nd ‘ 𝑏 ) − ( 1st ‘ 𝑏 ) ) ) ↦ ( 𝑠 ‘ ( 𝑥 + ( 1st ‘ 𝑏 ) ) ) ) , ∅ ) ) |
5 |
4
|
mpondm0 |
⊢ ( ¬ ( 𝑆 ∈ V ∧ 〈 𝐹 , 𝐿 〉 ∈ ( ℤ × ℤ ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
6 |
3 5
|
nsyl5 |
⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |