| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 2 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 5 |  | swrdlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐼 ) ) | 
						
							| 6 | 4 5 | mpd3an3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐼 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐼 ) ) |