| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 2 |  | nn0z | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℤ ) | 
						
							| 3 | 2 | ad2antrl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 5 | 4 | ad2antll | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 6 |  | swrdlend | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ≤  𝑀  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ∅ ) ) | 
						
							| 7 | 1 3 5 6 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑁  ≤  𝑀  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ∅ ) ) | 
						
							| 8 | 7 | 3impia | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑁  ≤  𝑀 )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ∅ ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  𝑈  ∈  Word  𝑉 ) | 
						
							| 10 |  | swrdlend | ⊢ ( ( 𝑈  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ≤  𝑀  →  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  =  ∅ ) ) | 
						
							| 11 | 9 3 5 10 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑁  ≤  𝑀  →  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  =  ∅ ) ) | 
						
							| 12 | 11 | 3impia | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑁  ≤  𝑀 )  →  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  =  ∅ ) | 
						
							| 13 | 8 12 | eqtr4d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑁  ≤  𝑀 )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ) |