| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdsb0eq | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑁  ≤  𝑀 )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ) | 
						
							| 2 | 1 | 3expa | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  ∧  𝑁  ≤  𝑀 )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( 𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) ) )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ) | 
						
							| 4 | 3 | 3adantr3 | ⊢ ( ( 𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) )  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ) | 
						
							| 5 |  | ral0 | ⊢ ∀ 𝑖  ∈  ∅ ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) | 
						
							| 6 |  | nn0z | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℤ ) | 
						
							| 7 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 8 |  | fzon | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ≤  𝑀  ↔  ( 𝑀 ..^ 𝑁 )  =  ∅ ) ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ≤  𝑀  ↔  ( 𝑀 ..^ 𝑁 )  =  ∅ ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑁  ≤  𝑀 )  →  ( 𝑀 ..^ 𝑁 )  =  ∅ ) | 
						
							| 11 | 10 | raleqdv | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑁  ≤  𝑀 )  →  ( ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  ∅ ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 12 | 5 11 | mpbiri | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑁  ≤  𝑀 )  →  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ≤  𝑀  →  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( 𝑁  ≤  𝑀  →  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 15 | 14 | impcom | ⊢ ( ( 𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) )  →  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) | 
						
							| 16 | 4 15 | 2thd | ⊢ ( ( 𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 17 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  ∈  Word  𝑉 ) | 
						
							| 18 |  | swrdcl | ⊢ ( 𝑈  ∈  Word  𝑉  →  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ∈  Word  𝑉 ) | 
						
							| 19 |  | eqwrd | ⊢ ( ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  ∈  Word  𝑉  ∧  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ∈  Word  𝑉 )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ↔  ( ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( ♯ ‘ ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ↔  ( ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( ♯ ‘ ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ↔  ( ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( ♯ ‘ ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ¬  𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ↔  ( ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( ♯ ‘ ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) ) | 
						
							| 23 |  | swrdsbslen | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( ♯ ‘ ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ¬  𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( ♯ ‘ ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 25 | 24 | biantrurd | ⊢ ( ( ¬  𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ( ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( ♯ ‘ ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) ) | 
						
							| 26 |  | nn0re | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℝ ) | 
						
							| 27 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 28 |  | ltnle | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑀  <  𝑁  ↔  ¬  𝑁  ≤  𝑀 ) ) | 
						
							| 29 |  | ltle | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑀  <  𝑁  →  𝑀  ≤  𝑁 ) ) | 
						
							| 30 | 28 29 | sylbird | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ¬  𝑁  ≤  𝑀  →  𝑀  ≤  𝑁 ) ) | 
						
							| 31 | 26 27 30 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ¬  𝑁  ≤  𝑀  →  𝑀  ≤  𝑁 ) ) | 
						
							| 32 | 31 | 3ad2ant2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( ¬  𝑁  ≤  𝑀  →  𝑀  ≤  𝑁 ) ) | 
						
							| 33 |  | simpl1l | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 34 |  | simpl2l | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 35 | 6 7 | anim12i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 36 | 35 | 3ad2ant2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 37 | 36 | anim1i | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 38 |  | df-3an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  ↔  ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 40 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 41 | 39 40 | sylibr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 42 | 34 41 | jca | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 43 |  | simpl3l | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  𝑁  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 44 |  | swrdlen2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( 𝑁  −  𝑀 ) ) | 
						
							| 45 | 33 42 43 44 | syl3anc | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) )  =  ( 𝑁  −  𝑀 ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) )  =  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 47 | 46 | raleqdv | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑗  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) | 
						
							| 48 |  | 0zd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  0  ∈  ℤ ) | 
						
							| 49 |  | zsubcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  −  𝑀 )  ∈  ℤ ) | 
						
							| 50 | 7 6 49 | syl2anr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  −  𝑀 )  ∈  ℤ ) | 
						
							| 51 | 50 | 3ad2ant2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( 𝑁  −  𝑀 )  ∈  ℤ ) | 
						
							| 52 | 6 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑀  ∈  ℤ ) | 
						
							| 53 | 52 | 3ad2ant2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 54 |  | fzoshftral | ⊢ ( ( 0  ∈  ℤ  ∧  ( 𝑁  −  𝑀 )  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) ) [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) | 
						
							| 55 | 48 51 53 54 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) ) [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) ) [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) | 
						
							| 57 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 58 |  | nn0cn | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℂ ) | 
						
							| 59 |  | addlid | ⊢ ( 𝑀  ∈  ℂ  →  ( 0  +  𝑀 )  =  𝑀 ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑀  ∈  ℂ )  →  ( 0  +  𝑀 )  =  𝑀 ) | 
						
							| 61 |  | npcan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑀  ∈  ℂ )  →  ( ( 𝑁  −  𝑀 )  +  𝑀 )  =  𝑁 ) | 
						
							| 62 | 60 61 | oveq12d | ⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑀  ∈  ℂ )  →  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) )  =  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 63 | 57 58 62 | syl2anr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) )  =  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 64 | 63 | 3ad2ant2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) )  =  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) )  =  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 66 | 65 | raleqdv | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ∀ 𝑖  ∈  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) ) [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) | 
						
							| 67 |  | ovex | ⊢ ( 𝑖  −  𝑀 )  ∈  V | 
						
							| 68 |  | sbceqg | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ( [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 ) ) ) | 
						
							| 69 |  | csbfv2g | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ 𝑗 ) ) | 
						
							| 70 |  | csbvarg | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ 𝑗  =  ( 𝑖  −  𝑀 ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ 𝑗 )  =  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) ) ) | 
						
							| 72 | 69 71 | eqtrd | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) ) ) | 
						
							| 73 |  | csbfv2g | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ 𝑗 ) ) | 
						
							| 74 | 70 | fveq2d | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) ) ) | 
						
							| 75 | 73 74 | eqtrd | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) ) ) | 
						
							| 76 | 72 75 | eqeq12d | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ( ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ⦋ ( 𝑖  −  𝑀 )  /  𝑗 ⦌ ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) ) ) ) | 
						
							| 77 | 68 76 | bitrd | ⊢ ( ( 𝑖  −  𝑀 )  ∈  V  →  ( [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) ) ) ) | 
						
							| 78 | 67 77 | mp1i | ⊢ ( ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) ) ) ) | 
						
							| 79 | 33 42 43 | 3jca | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 80 |  | swrdfv2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 81 | 79 80 | sylan | ⊢ ( ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 82 |  | simpl1r | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  𝑈  ∈  Word  𝑉 ) | 
						
							| 83 |  | simpl3r | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) | 
						
							| 84 | 82 42 83 | 3jca | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( 𝑈  ∈  Word  𝑉  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 85 |  | swrdfv2 | ⊢ ( ( ( 𝑈  ∈  Word  𝑉  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) )  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  =  ( 𝑈 ‘ 𝑖 ) ) | 
						
							| 86 | 84 85 | sylan | ⊢ ( ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  =  ( 𝑈 ‘ 𝑖 ) ) | 
						
							| 87 | 81 86 | eqeq12d | ⊢ ( ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ ( 𝑖  −  𝑀 ) )  ↔  ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 88 | 78 87 | bitrd | ⊢ ( ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 89 | 88 | ralbidva | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 90 | 66 89 | bitrd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ∀ 𝑖  ∈  ( ( 0  +  𝑀 ) ..^ ( ( 𝑁  −  𝑀 )  +  𝑀 ) ) [ ( 𝑖  −  𝑀 )  /  𝑗 ] ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 91 | 47 56 90 | 3bitrd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  ∧  𝑀  ≤  𝑁 )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 92 | 91 | ex | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( 𝑀  ≤  𝑁  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 93 | 32 92 | syld | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( ¬  𝑁  ≤  𝑀  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 94 | 93 | impcom | ⊢ ( ( ¬  𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) )  →  ( ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  =  ( ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑗 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 95 | 22 25 94 | 3bitr2d | ⊢ ( ( ¬  𝑁  ≤  𝑀  ∧  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) ) )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 96 | 16 95 | pm2.61ian | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ∧  𝑁  ≤  ( ♯ ‘ 𝑈 ) ) )  →  ( ( 𝑊  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝑈  substr  〈 𝑀 ,  𝑁 〉 )  ↔  ∀ 𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) |