Metamath Proof Explorer


Theorem syl10

Description: A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011)

Ref Expression
Hypotheses syl10.1 ( 𝜑 → ( 𝜓𝜒 ) )
syl10.2 ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
syl10.3 ( 𝜒 → ( 𝜏𝜂 ) )
Assertion syl10 ( 𝜑 → ( 𝜓 → ( 𝜃𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 syl10.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 syl10.2 ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
3 syl10.3 ( 𝜒 → ( 𝜏𝜂 ) )
4 1 3 syl6 ( 𝜑 → ( 𝜓 → ( 𝜏𝜂 ) ) )
5 2 4 syldd ( 𝜑 → ( 𝜓 → ( 𝜃𝜂 ) ) )