Metamath Proof Explorer


Theorem syl1111anc

Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses syl1111anc.1 ( 𝜑𝜓 )
syl1111anc.2 ( 𝜑𝜒 )
syl1111anc.3 ( 𝜑𝜃 )
syl1111anc.4 ( 𝜑𝜏 )
syl1111anc.5 ( ( ( ( 𝜓𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 )
Assertion syl1111anc ( 𝜑𝜂 )

Proof

Step Hyp Ref Expression
1 syl1111anc.1 ( 𝜑𝜓 )
2 syl1111anc.2 ( 𝜑𝜒 )
3 syl1111anc.3 ( 𝜑𝜃 )
4 syl1111anc.4 ( 𝜑𝜏 )
5 syl1111anc.5 ( ( ( ( 𝜓𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 )
6 1 2 jca ( 𝜑 → ( 𝜓𝜒 ) )
7 6 3 4 5 syl21anc ( 𝜑𝜂 )