Metamath Proof Explorer


Theorem syl121anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 ( 𝜑𝜓 )
syl3anc.2 ( 𝜑𝜒 )
syl3anc.3 ( 𝜑𝜃 )
syl3Xanc.4 ( 𝜑𝜏 )
syl121anc.5 ( ( 𝜓 ∧ ( 𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )
Assertion syl121anc ( 𝜑𝜂 )

Proof

Step Hyp Ref Expression
1 syl3anc.1 ( 𝜑𝜓 )
2 syl3anc.2 ( 𝜑𝜒 )
3 syl3anc.3 ( 𝜑𝜃 )
4 syl3Xanc.4 ( 𝜑𝜏 )
5 syl121anc.5 ( ( 𝜓 ∧ ( 𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )
6 2 3 jca ( 𝜑 → ( 𝜒𝜃 ) )
7 1 6 4 5 syl3anc ( 𝜑𝜂 )