Metamath Proof Explorer


Theorem syl12anc

Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009)

Ref Expression
Hypotheses syl12anc.1 ( 𝜑𝜓 )
syl12anc.2 ( 𝜑𝜒 )
syl12anc.3 ( 𝜑𝜃 )
syl12anc.4 ( ( 𝜓 ∧ ( 𝜒𝜃 ) ) → 𝜏 )
Assertion syl12anc ( 𝜑𝜏 )

Proof

Step Hyp Ref Expression
1 syl12anc.1 ( 𝜑𝜓 )
2 syl12anc.2 ( 𝜑𝜒 )
3 syl12anc.3 ( 𝜑𝜃 )
4 syl12anc.4 ( ( 𝜓 ∧ ( 𝜒𝜃 ) ) → 𝜏 )
5 2 3 jca ( 𝜑 → ( 𝜒𝜃 ) )
6 1 5 4 syl2anc ( 𝜑𝜏 )